Numerical Simulations of the Boundary Layer Jet off the Southeastern Coast of China

Yu Du Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Search for other papers by Yu Du in
Current site
Google Scholar
PubMed
Close
,
Yi-Leng Chen Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Yi-Leng Chen in
Current site
Google Scholar
PubMed
Close
, and
Qinghong Zhang Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Search for other papers by Qinghong Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A strong coastal boundary layer jet (CBLJ) (~8 m s−1) off the southeastern coast of China (around 28°N, 122°E) is found from the July 2006–11 hourly model data simulated by the Advanced Research Weather Research and Forecasting Model (WRF-ARW) with a 9-km horizontal grid. The southerly CBLJ has a jet core at the 925-hPa level, located along the western periphery of the west Pacific subtropical high (WPSH). The CBLJ is mainly contributed by large-scale enhancement by diurnal forcing and orographic effects by the coastal terrain along the southeastern China coast and the terrain of Taiwan.

Although the geostrophic winds offshore are faster in the afternoon due to the larger east–west pressure gradient caused by land surface heating over the China plain, the CBLJ has a nocturnal (~0200 LST) maximum. In the afternoon hours, easterly ageostrophic winds driven by differential land–sea thermal heating develop at low levels. After sunset, with the disappearance of land surface heating, the ageostrophic winds offshore veer southward by the Coriolis force and combine with the southerly geostrophic flow resulting in a nocturnal maximum in the CBLJ. Furthermore, from two model sensitivity experiments (NoTW and LowFJ), it is apparent that the terrain of Taiwan and Fujian exerts a secondary influence (1–2 m s−1) on the strength of the CBLJ. The orographic blocking by the terrain of Taiwan and Fujian is more significant with a larger (~1 m s−1) southerly wind component north of the Taiwan Strait at night than in the afternoon hours.

Corresponding author address: Dr. Yi-Leng Chen, Department of Atmospheric Sciences, SOEST, University of Hawai‘i at Mānoa, 2525 Correa St., Honolulu, HI 96822. E-mail: yileng@hawaii.edu

Abstract

A strong coastal boundary layer jet (CBLJ) (~8 m s−1) off the southeastern coast of China (around 28°N, 122°E) is found from the July 2006–11 hourly model data simulated by the Advanced Research Weather Research and Forecasting Model (WRF-ARW) with a 9-km horizontal grid. The southerly CBLJ has a jet core at the 925-hPa level, located along the western periphery of the west Pacific subtropical high (WPSH). The CBLJ is mainly contributed by large-scale enhancement by diurnal forcing and orographic effects by the coastal terrain along the southeastern China coast and the terrain of Taiwan.

Although the geostrophic winds offshore are faster in the afternoon due to the larger east–west pressure gradient caused by land surface heating over the China plain, the CBLJ has a nocturnal (~0200 LST) maximum. In the afternoon hours, easterly ageostrophic winds driven by differential land–sea thermal heating develop at low levels. After sunset, with the disappearance of land surface heating, the ageostrophic winds offshore veer southward by the Coriolis force and combine with the southerly geostrophic flow resulting in a nocturnal maximum in the CBLJ. Furthermore, from two model sensitivity experiments (NoTW and LowFJ), it is apparent that the terrain of Taiwan and Fujian exerts a secondary influence (1–2 m s−1) on the strength of the CBLJ. The orographic blocking by the terrain of Taiwan and Fujian is more significant with a larger (~1 m s−1) southerly wind component north of the Taiwan Strait at night than in the afternoon hours.

Corresponding author address: Dr. Yi-Leng Chen, Department of Atmospheric Sciences, SOEST, University of Hawai‘i at Mānoa, 2525 Correa St., Honolulu, HI 96822. E-mail: yileng@hawaii.edu
Save
  • Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38, 283290.

    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., 1968: Climatology of the low level jet. Mon. Wea. Rev., 96, 833850, doi:10.1175/1520-0493(1968)096<0833:COTLLJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Burk, S. D., and W. T. Thompson, 1996: The summertime low-level jet and marine boundary layer structure along the California coast. Mon. Wea. Rev., 124, 668686, doi:10.1175/1520-0493(1996)124<0668:TSLLJA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chakraborty, A., R. S. Nanjundiah, and J. Srinivasan, 2009: Impact of African orography and the Indian summer monsoon on the low-level Somali jet. Int. J. Climatol., 29, 983992, doi:10.1002/joc.1720.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., and D. R. Novak, 2010: The New York Bight jet: Climatology and dynamical evolution. Mon. Wea. Rev., 138, 23852404, doi:10.1175/2009MWR3231.1.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and T. T. Warner, 1993: A three-dimensional investigation of a Carolina low-level jet during GALE IOP 2. Mon. Wea. Rev., 121, 10301047, doi:10.1175/1520-0493(1993)121<1030:ATDNIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Drobinski, P., R. Rotunno, and T. Dubos, 2011: Linear theory of the sea breeze in a thermal wind. Quart. J. Roy. Meteor. Soc., 137, 16021609, doi:10.1002/qj.847.

    • Search Google Scholar
    • Export Citation
  • Du, Y., and R. Rotunno, 2014: A simple analytical model of the nocturnal low-level jet over the Great Plains of the United States. J. Atmos. Sci., 71, 36743683, doi:10.1175/JAS-D-14-0060.1.

    • Search Google Scholar
    • Export Citation
  • Du, Y., Q. H. Zhang, Y. Yue, and Y. M. Yang, 2012: Characteristics of low-level jets in Shanghai during the 2008–2009 warm seasons as inferred from wind profiler radar data. J. Meteor. Soc. Japan, 90, 891903, doi:10.2151/jmsj.2012-603.

    • Search Google Scholar
    • Export Citation
  • Du, Y., Q. H. Zhang, Y. L. Chen, Y. Y. Zhao, and X. Wang, 2014: Numerical simulations of spatial distributions and diurnal variations of low-level jets in China during early summer. J. Climate, 27, 57475767, doi:10.1175/JCLI-D-13-00571.1.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R., and C. M. Ricardo, 2005: The low-level jet off the west coast of subtropical South America: Structure and variability. Mon. Wea. Rev., 133, 22462261, doi:10.1175/MWR2972.1.

    • Search Google Scholar
    • Export Citation
  • Haurwitz, B., 1947: Comments on the sea-breeze circulation. J. Meteor., 4, 18, doi:10.1175/1520-0469(1947)004<0001:COTSBC>2.0.CO;2.

  • Jiang, Q., S. Wang, and L. O’Neill, 2010: Some insights into the characteristics and dynamics of the Chilean low-level coastal jet. Mon. Wea. Rev., 138, 31853206, doi:10.1175/2010MWR3368.1.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., J. F. González-Rouco, E. García-Bustamante, J. Navarro, J. P. Montávez, J. V.-G. de Arellano, J. Dudhia, and A. Muñoz-Roldan, 2010: Surface wind regionalization over complex terrain: Evaluation and analysis of a high-resolution WRF simulation. J. Appl. Meteor. Climatol., 49, 268287, doi:10.1175/2009JAMC2175.1.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., J. Molinari, and H. L. Pan, 1976: Numerical simulation of the Somali jet. J. Atmos. Sci., 33, 23502362, doi:10.1175/1520-0469(1976)033<2350:NSOTSJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, J., and Y. L. Chen, 1998: Barrier jets during TAMEX. Mon. Wea. Rev., 126, 959971, doi:10.1175/1520-0493(1998)126<0959:BJDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, P.-L., Y.-L. Chen, C.-S. Chen, C.-L. Liu, and C.-Y. Chen, 2011: Numerical experiments investigating the orographic effects on a heavy rainfall event over the northwestern coast of Taiwan during TAMEX IOP 13. Meteor. Atmos. Phys., 114, 3550, doi:10.1007/s00703-011-0155-7.

    • Search Google Scholar
    • Export Citation
  • Lo, J. C.-F., Z.-L. Yang, and R. A. Pielke Sr., 2008: Assessment of three dynamical climate downscaling methods using the Weather Research and Forecasting (WRF) model. J. Geophys. Res., 113, D09112, doi:10.1029/2007JD009216.

    • Search Google Scholar
    • Export Citation
  • Novak, D. R., and B. A. Colle, 2006: Observations of multiple sea breeze boundaries during an unseasonably warm day in metropolitan New York City. Bull. Amer. Meteor. Soc., 87, 169174, doi:10.1175/BAMS-87-2-169.

    • Search Google Scholar
    • Export Citation
  • Parish, T. R., and L. D. Oolman, 2010: On the role of sloping terrain in the forcing of the Great Plains low-level jet. J. Atmos. Sci., 67, 26902699, doi:10.1175/2010JAS3368.1.

    • Search Google Scholar
    • Export Citation
  • Pomeroy, K. R., and T. R. Parish, 2001: A case study of the interaction of the summertime coastal jet with the California topography. Mon. Wea. Rev., 129, 530539, doi:10.1175/1520-0493(2001)129<0530:ACSOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ranjha, R., G. Svensson, M. Tjernström, and A. Semedo, 2013: Global distribution and seasonal variability of coastal low-level jets derived from ERA-Interim reanalysis. Tellus, 65A, 20412, doi:10.3402/tellusa.v65i0.20412.

    • Search Google Scholar
    • Export Citation
  • Rife, D. L., J. O. Pinto, A. J. Monaghan, C. A. Davis, and J. R. Hannan, 2010: Global distribution and characteristics of diurnally varying low-level jets. J. Climate, 23, 50415064, doi:10.1175/2010JCLI3514.1.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., 1983: On the linear theory of the land and sea breeze. J. Atmos. Sci., 40, 19992009, doi:10.1175/1520-0469(1983)040<1999:OTLTOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Schmidt, F. H., 1947: An elementary theory of the land-and sea-breeze circulation. J. Meteor., 4, 920, doi:10.1175/1520-0469(1947)004<0009:AETOTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sjostedt, D. W., J. T. Sigmon, and S. J. Colucci, 1990: The Carolina nocturnal low-level jet: Synoptic climatology and a case study. Wea. Forecasting, 5, 404415, doi:10.1175/1520-0434(1990)005<0404:TCNLLJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Song, J., K. Liao, R. L. Coulter, and B. M. Lesht, 2005: Climatology of the low-level jet at the Southern Great Plains atmospheric boundary layer experiments site. J. Appl. Meteor., 44, 15931606, doi:10.1175/JAM2294.1.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., 1996: Importance of low-level jets to climate: A review. J. Climate, 9, 16981711, doi:10.1175/1520-0442(1996)009<1698:IOLLJT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., Y.-L. Chen, and F. M. Fujioka, 2005: Numerical simulations of the island-induced circulation over the island of Hawaii during HaRP. Mon. Wea. Rev., 133, 36933713, doi:10.1175/MWR3053.1.

    • Search Google Scholar
    • Export Citation
  • Žagar, N., M. Žagar, J. Cedilnik, G. Gregorič, and J. Rakovec, 2006: Validation of mesoscale low-level winds obtained by dynamical downscaling of ERA40 over complex terrain. Tellus, 58A, 445455, doi:10.1111/j.1600-0870.2006.00186.x.

    • Search Google Scholar
    • Export Citation
  • Zemba, J., and C. A. Friehe, 1987: The marine atmospheric boundary layer jet in the Coastal Ocean Dynamics Experiment. J. Geophys. Res., 92, 14891496, doi:10.1029/JC092iC02p01489.

    • Search Google Scholar
    • Export Citation
  • Zhang, D. L., S. Zhang, and S. J. Weaver, 2006: Low-level jets over the mid-Atlantic states: Warm-season climatology and a case study. J. Appl. Meteor. Climatol., 45, 194209, doi:10.1175/JAM2313.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. P., and Coauthors, 2012: The impact of circulation patterns on regional transport pathways and air quality over Beijing and its surroundings. Atmos. Chem. Phys., 12, 50315053, doi:10.5194/acp-12-5031-2012.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1018 560 33
PDF Downloads 712 175 18