Impact of Sea Level Assimilation on ENSO Initialization and Prediction: The Role of the Sea Level Zonal Tilt and Zonal Mean

Sulian Thual Department of Mathematics, and Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, New York, New York

Search for other papers by Sulian Thual in
Current site
Google Scholar
PubMed
Close
,
Nadia Ayoub Laboratoire d’Etudes en Géophysique et Océanographie Spatiales, CNRS/IRD, University of Toulouse, Toulouse, France

Search for other papers by Nadia Ayoub in
Current site
Google Scholar
PubMed
Close
, and
Boris Dewitte Laboratoire d’Etudes en Géophysique et Océanographie Spatiales, CNRS/IRD, University of Toulouse, Toulouse, France

Search for other papers by Boris Dewitte in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

At present, most models forecasting the El Niño–Southern Oscillation (ENSO) use data assimilation, which constrains models physics using available observations. In this article, an ENSO model of intermediate complexity is constrained by sea level observations: sea level from the Simple Ocean Data Assimilation (SODA) reanalysis is assimilated in the model forced by SODA winds, using an ensemble Kalman filter. In addition, retrospective ENSO forecasts over the period 1958–2007 are computed. The assimilation of sea level observations slightly improves the model’s predictive skill, which is due to the correction of the recharge–discharge process simulated by the model. To assess this, two indices relevant to the ENSO recharge–discharge theory are considered: the zonal tilt and zonal mean of sea level in the equatorial Pacific. The assimilation of those two observed indices alone leads to results that are qualitatively similar to the assimilation of full maps of sea level observations. This partly results from the fact that the leading statistical modes of the model errors on sea level have a zonal tilt and zonal mean structure. The data assimilation corrects in particular a too weak amplitude of the zonal mean sea level and its associated subsurface variability in the model. The authors suggest that insight on the role of the recharge–discharge process in other models could be gained by comparing the assimilation of full maps of sea level observations with the assimilation of the two indices of sea level.

Corresponding author address: Sulian Thual, Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012. E-mail: sulian.thual@gmail.com

Abstract

At present, most models forecasting the El Niño–Southern Oscillation (ENSO) use data assimilation, which constrains models physics using available observations. In this article, an ENSO model of intermediate complexity is constrained by sea level observations: sea level from the Simple Ocean Data Assimilation (SODA) reanalysis is assimilated in the model forced by SODA winds, using an ensemble Kalman filter. In addition, retrospective ENSO forecasts over the period 1958–2007 are computed. The assimilation of sea level observations slightly improves the model’s predictive skill, which is due to the correction of the recharge–discharge process simulated by the model. To assess this, two indices relevant to the ENSO recharge–discharge theory are considered: the zonal tilt and zonal mean of sea level in the equatorial Pacific. The assimilation of those two observed indices alone leads to results that are qualitatively similar to the assimilation of full maps of sea level observations. This partly results from the fact that the leading statistical modes of the model errors on sea level have a zonal tilt and zonal mean structure. The data assimilation corrects in particular a too weak amplitude of the zonal mean sea level and its associated subsurface variability in the model. The authors suggest that insight on the role of the recharge–discharge process in other models could be gained by comparing the assimilation of full maps of sea level observations with the assimilation of the two indices of sea level.

Corresponding author address: Sulian Thual, Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012. E-mail: sulian.thual@gmail.com
Save
  • Auclair, F., P. Marsaleix, and P. De Mey, 2003: Space-time structure and dynamics of the forecast error in a coastal circulation model of the Gulf of Lions. Dyn. Atmos. Oceans, 36, 309346, doi:10.1016/S0377-0265(02)00068-4.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., M. K. Tippett, M. L. L’Heureux, S. Li, and G. D. DeWitt, 2012: Skill of real-time seasonal ENSO model predictions during 2002–11: Is our capability increasing? Bull. Amer. Meteor. Soc., 93, 631651, doi:10.1175/BAMS-D-11-00111.1.

    • Search Google Scholar
    • Export Citation
  • Bellenger, H., E. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard, 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 1999–2018, doi:10.1007/s00382-013-1783-z.

    • Search Google Scholar
    • Export Citation
  • Belmadani, A., B. Dewitte, and S.-I. An, 2010: ENSO feedbacks and associated variability timescales in a multimodel ensemble. J. Climate, 23, 31813204, doi:10.1175/2010JCLI2830.1.

    • Search Google Scholar
    • Export Citation
  • Bennett, A. F., B. S. Chua, D. E. Harrison, and M. J. McPhaden, 2000: Generalized inversion of Tropical Atmosphere–Ocean (TAO) data and a coupled model of the tropical Pacific. Part II: The 1995–96 La Niña and 1997–98 El Niño. J. Climate, 13, 27702785, doi:10.1175/1520-0442(2000)013<2770:GIOTAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boulanger, J.-P., and L.-L. Fu, 1996: Evidence of boundary reflection of Kelvin and first-mode Rossby waves from TOPEX/POSEIDON sea level data. J. Geophys. Res., 101, 16 361–16 371, doi:10.1029/96JC01282.

    • Search Google Scholar
    • Export Citation
  • Cane, M., A. Kaplan, R. Miller, B. Tang, E. Hackert, and A. Busalacchi, 1996: Mapping tropical Pacific sea level: Data assimilation via a reduced state space Kalman filter. J. Geophys. Res., 101, 22 59922 617, doi:10.1029/96JC01684.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using simple ocean data assimilation (SODA). Mon. Wea. Rev., 136, 29993017, doi:10.1175/2007MWR1978.1.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., G. E. Chepurin, and X. Cao, 2000a: A Simple Ocean Data Assimilation analysis of the global upper ocean 1950–95. Part I: Methodology. J. Phys. Oceanogr., 30, 294309, doi:10.1175/1520-0485(2000)030<0294:ASODAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., G. E. Chepurin, and X. Cao, 2000b: A Simple Ocean Data Assimilation analysis of the global upper ocean 1950–95. Part II: Results. J. Phys. Oceanogr., 30, 311326, doi:10.1175/1520-0485(2000)030<0311:ASODAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, D., 2010: Coupled data assimilation for ENSO prediction. Adv. Geosci., 18, 4562.

  • Chen, D., and M. A. Cane, 2008: El Niño prediction and predictability. J. Comput. Phys., 227, 36253640, doi:10.1016/j.jcp.2007.05.014.

    • Search Google Scholar
    • Export Citation
  • Chen, D., M. A. Cane, S. E. Zebiak, and A. Kaplan, 1998: The impact of sea level data assimilation on the Lamont model prediction of the 1997/1998 El Niño. Geophys. Res. Lett., 25, 28372840, doi:10.1029/98GL52186.

    • Search Google Scholar
    • Export Citation
  • Chen, D., M. A. Cane, A. Kaplan, S. E. Zebiak, and D. Huang, 2004: Predictability of El Niño over the past 148 years. Nature, 428, 733736, doi:10.1038/nature02439.

    • Search Google Scholar
    • Export Citation
  • Choi, K.-Y., G. Vecchi, and A. Wittenberg, 2013: ENSO transition, duration, and amplitude asymmetries: Role of the nonlinear wind stress coupling in a conceptual model. J. Climate, 26, 94629476, doi:10.1175/JCLI-D-13-00045.1.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., 2010: Analytical theory for the quasi-steady and low-frequency equatorial ocean response to wind forcing: The tilt and warm water volume modes. J. Phys. Oceanogr., 40, 121137, doi:10.1175/2009JPO4263.1.

    • Search Google Scholar
    • Export Citation
  • Dewitte, B., 2000: Sensitivity of an intermediate ocean–atmosphere coupled model of the tropical Pacific to its oceanic vertical structure. J. Climate, 13, 23632388, doi:10.1175/1520-0442(2000)013<2363:SOAIOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dewitte, B., and C. Perigaud, 1996: El Niño–La Niña events simulated with the Cane and Zebiak’s model and observed with satellite or in situ data. Part I: Model forced with observations. J. Climate, 9, 11881207, doi:10.1175/1520-0442(1996)009<1188:ENLNES>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dewitte, B., D. Gushchina, Y. duPenhoat, and S. Lakeev, 2002: On the importance of subsurface variability for ENSO simulation and prediction with intermediate coupled models of the Tropical Pacific: A case study for the 1997–1998 El Niño. Geophys. Res. Lett., 29, doi:10.1029/2001GL014452.

    • Search Google Scholar
    • Export Citation
  • Dommenget, D., T. Bayr, and C. Frauen, 2013: Analysis of the non-linearity in the pattern and time evolution of El Niño–Southern Oscillation. Climate Dyn., 40, 28252847, doi:10.1007/s00382-012-1475-0.

    • Search Google Scholar
    • Export Citation
  • Echevin, V., P. De Mey, and G. Evensen, 2000: Horizontal and vertical structure of the representer functions for sea surface measurements in a coastal circulation model. J. Phys. Oceanogr., 30, 26272635, doi:10.1175/1520-0485(2000)030<2627:HAVSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2003: The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn., 53, 343367, doi:10.1007/s10236-003-0036-9.

    • Search Google Scholar
    • Export Citation
  • Hoteit, I., B. Cornuelle, and P. Heimbach, 2010: An eddy-permitting, dynamically consistent adjoint-based assimilation system for the tropical Pacific: Hindcast experiments in 2000. J. Geophys. Res., 115, C03001, doi:10.1029/2009JC005437.

    • Search Google Scholar
    • Export Citation
  • Ji, M., R. Reynolds, and D. W. Behringer, 2000: Use of TOPEX/Poseidon sea level data for ocean analyses and ENSO prediction: Some early results. J. Climate, 13, 216231, doi:10.1175/1520-0442(2000)013<0216:UOTPSL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997a: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811829, doi:10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997b: An equatorial ocean recharge paradigm for ENSO. Part II: A stripped-down coupled model. J. Atmos. Sci., 54, 830847, doi:10.1175/1520-0469(1997)054<0830:AEORPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., L. Lin, A. Timmermann, and J. Zhao, 2007: Ensemble-mean dynamics of the ENSO recharge oscillator under state-dependent stochastic forcing. Geophys. Res. Lett., 34, L03807, doi:10.1029/2006GL027372.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and P. S. Schopf, 1998: Decadal variability in ENSO predictability and prediction. J. Climate, 11, 28042822, doi:10.1175/1520-0442(1998)011<2804:DVIEPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kleeman, R., 2008: Stochastic theories for the irregularity of ENSO. Philos. Trans. Roy. Soc.: Math. Phys. Eng. Sci., 366A, 25092524, doi:10.1098/rsta.2008.0048.

    • Search Google Scholar
    • Export Citation
  • Latif, M., D. Anderson, M. Cane, R. Kleeman, A. Leetmaa, J. O’Brien, A. Rosati, and E. Schneider, 1998: A review of the predictability and prediction of ENSO. J. Geophys. Res., 103, 14 37514 393, doi:10.1029/97JC03413.

    • Search Google Scholar
    • Export Citation
  • Lee, T., J.-P. Boulanger, A. Foo, L.-L. Fu, and R. Giering, 2000: Data assimilation by an intermediate coupled ocean–atmosphere model: Application to the 1997–1998 El Niño. J. Geophys. Res., 105, 26 06326 087, doi:10.1029/2000JC900118.

    • Search Google Scholar
    • Export Citation
  • Lengaigne, M., U. Hausmann, G. Madec, C. Menkes, J. Vialard, and J. M. Molines, 2012: Mechanisms controlling warm water volume interannual variations in the equatorial Pacific: Diabatic versus adiabatic processes. Climate Dyn., 38, 10311046, doi:10.1007/s00382-011-1051-z.

    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., 1981: A linear stratified ocean model of the equatorial undercurrent. Philos. Trans. Roy. Soc. London, 298A, 603635, doi:10.1098/rsta.1981.0002.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 2012: A 21st century shift in the relationship between ENSO SST and warm water volume anomalies. Geophys. Res. Lett., 39, L09706, doi:10.1029/2012GL051826.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and Coauthors, 1998: The tropical ocean–global atmosphere observing system: A decade of progress. J. Geophys. Res., 103, 14 16914 240, doi:10.1029/97JC02906.

    • Search Google Scholar
    • Export Citation
  • Meinen, C. S., and M. J. McPhaden, 2000: Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J. Climate, 13, 35513559, doi:10.1175/1520-0442(2000)013<3551:OOWWVC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moore, A. M., and R. Kleeman, 1999: Stochastic forcing of ENSO by the intraseasonal oscillation. J. Climate, 12, 11991220, doi:10.1175/1520-0442(1999)012<1199:SFOEBT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Perigaud, C., C. Cassou, B. Dewitte, L.-L. Fu, and D. Neelin, 2000: Using data and intermediate coupled models for seasonal-to-interannual forecasts. Mon. Wea. Rev., 128, 30253049, doi:10.1175/1520-0493(2000)128<3025:UDAICM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Philander, S., and A. Fedorov, 2003: Is El Niño sporadic or cyclic? Annu. Rev. Earth Planet. Sci., 31, 579594, doi:10.1146/annurev.earth.31.100901.141255.

    • Search Google Scholar
    • Export Citation
  • Ren, H., and F.-F. Jin, 2013: Recharge oscillator mechanisms in two types of ENSO. J. Climate, 26, 65066523, doi:10.1175/JCLI-D-12-00601.1.

    • Search Google Scholar
    • Export Citation
  • Stephenson, D. B., and F. J. Doblas Reyes, 2000: Statistical methods for interpreting Monte Carlo ensemble forecasts. Tellus, 52A, 300322, doi:10.1034/j.1600-0870.2000.d01-5.x.

    • Search Google Scholar
    • Export Citation
  • Sun, C., Z. Hao, M. Ghil, and J. D. Neelin, 2002: Data assimilation for a coupled ocean–atmosphere model. Part I: Sequential state estimation. Mon. Wea. Rev., 130, 10731099, doi:10.1175/1520-0493(2002)130<1073:DAFACO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tang, Y., and W. Hsieh, 2003: ENSO simulation and prediction in a hybrid coupled model with data assimilation. J. Meteor. Soc. Japan, 81, 119, doi:10.2151/jmsj.81.1.

    • Search Google Scholar
    • Export Citation
  • Thual, S., B. Dewitte, S.-I. An, and N. Ayoub, 2011: Sensitivity of ENSO to stratification in a recharge-discharge conceptual model. J. Climate, 24, 43324349, doi:10.1175/2011JCLI4148.1.

    • Search Google Scholar
    • Export Citation
  • Thual, S., B. Dewitte, N. Ayoub, and O. Thual, 2013: An asymptotic expansion for the recharge-discharge model of ENSO. J. Phys. Oceanogr., 43, 14071416, doi:10.1175/JPO-D-12-0161.1.

    • Search Google Scholar
    • Export Citation
  • Thual, S., A. Majda, and S. Stechmann, 2014: A stochastic skeleton model for the MJO. J. Atmos. Sci., 71, 697715, doi:10.1175/JAS-D-13-0186.1.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115, 22622278, doi:10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, R.-H., S. Zebiak, R. Kleeman, and N. Keenlyside, 2005: Retrospective El Niño forecasts using an improved intermediate coupled model. Mon. Wea. Rev., 133, 27772802, doi:10.1175/MWR3000.1.

    • Search Google Scholar
    • Export Citation
  • Zheng, F., and J. Zhu, 2008: Balanced multivariate model errors of an intermediate coupled model for ensemble Kalman filter data assimilation. Geophys. Res. Lett., 113, C07002, doi:10.1029/2007JC004621.

    • Search Google Scholar
    • Export Citation
  • Zheng, F., J. Zhu, and R.-H. Zhang, 2007: Impact of altimetry data on ENSO ensemble initializations and predictions. Geophys. Res. Lett., 34, L13611, doi:10.1029/2007GL030451.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2415 2075 76
PDF Downloads 95 25 3