Comparison of Wave Packets Associated with Extratropical Transition and Winter Cyclones

Ryan D. Torn Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Ryan D. Torn in
Current site
Google Scholar
PubMed
Close
and
Gregory J. Hakim University of Washington, Seattle, Washington

Search for other papers by Gregory J. Hakim in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Differences in the development of wave packets associated with midlatitude cyclones and the extratropical transition (ET) of tropical cyclones in the western North Pacific (WNP) and Atlantic basins are diagnosed observationally by compositing Climate Forecast System Reanalysis (CFSR) data over a 32-yr period and applying the null hypothesis of no difference in the development, structure, propagation, or downstream extent. While the development of midlatitude cyclones during the fall (August–October) and winter (November–March) amplifies a preexisting wave packet moving through the midlatitude storm track, ET is associated with the quasi-stationary amplification of the midlatitude flow. The ET cases involving the interaction of the decaying TC with a preexisting midlatitude trough are associated with a greater downstream amplitude and longer-lasting downstream response than ET cases that do not involve the interaction with a trough. In the WNP, ET wave packets have greater amplitude than those associated with winter midlatitude cyclones, but are similar to those associated with fall midlatitude cyclones. Moreover, ET events are associated with larger wavelengths and a statistically significant meridional wind anomaly farther downstream. By contrast, ET wave packets in the Atlantic basin have less amplitude and do not reach as far downstream as wave packets associated with fall and winter cyclones. WNP ET is characterized by larger integrated moisture flux convergence and, thus, latent heat release relative to its midlatitude counterpart, while Atlantic basin ET has smaller moisture flux convergence compared to midlatitude cyclones, which could explain why Atlantic ET is associated with less-amplified wave packets.

Corresponding author address: Ryan Torn, Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, ES 351, 1400 Washington Ave., Albany, NY 12222. E-mail: rtorn@albany.edu

Abstract

Differences in the development of wave packets associated with midlatitude cyclones and the extratropical transition (ET) of tropical cyclones in the western North Pacific (WNP) and Atlantic basins are diagnosed observationally by compositing Climate Forecast System Reanalysis (CFSR) data over a 32-yr period and applying the null hypothesis of no difference in the development, structure, propagation, or downstream extent. While the development of midlatitude cyclones during the fall (August–October) and winter (November–March) amplifies a preexisting wave packet moving through the midlatitude storm track, ET is associated with the quasi-stationary amplification of the midlatitude flow. The ET cases involving the interaction of the decaying TC with a preexisting midlatitude trough are associated with a greater downstream amplitude and longer-lasting downstream response than ET cases that do not involve the interaction with a trough. In the WNP, ET wave packets have greater amplitude than those associated with winter midlatitude cyclones, but are similar to those associated with fall midlatitude cyclones. Moreover, ET events are associated with larger wavelengths and a statistically significant meridional wind anomaly farther downstream. By contrast, ET wave packets in the Atlantic basin have less amplitude and do not reach as far downstream as wave packets associated with fall and winter cyclones. WNP ET is characterized by larger integrated moisture flux convergence and, thus, latent heat release relative to its midlatitude counterpart, while Atlantic basin ET has smaller moisture flux convergence compared to midlatitude cyclones, which could explain why Atlantic ET is associated with less-amplified wave packets.

Corresponding author address: Ryan Torn, Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, ES 351, 1400 Washington Ave., Albany, NY 12222. E-mail: rtorn@albany.edu
Save
  • Agusti-Panareda, A., C. D. Thorncroft, G. C. Craig, and S. L. Gray, 2004: The extratropical transition of Hurricane Irene (1999): A potential-vorticity perspective. Quart. J. Roy. Meteor. Soc., 130, 10471074, doi:10.1256/qj.02.140.

    • Search Google Scholar
    • Export Citation
  • Anwender, D., P. A. Harr, and S. C. Jones, 2008: Predictability associated with the downstream impacts of the extratropical transition of tropical cyclones: Case studies. Mon. Wea. Rev., 136, 32263247, doi:10.1175/2008MWR2249.1.

    • Search Google Scholar
    • Export Citation
  • Archambault, H. M., 2011: The downstream extratropical flow response to recurving Western North Pacific tropical cyclones. Ph.D. thesis, University at Albany, State University of New York, Albany, NY, 200 pp.

  • Archambault, H. M., D. Keyser, L. F. Bosart, and J. M. Cordeira, 2013: A climatological analysis of the extratropical flow response to recurving western North Pacific tropical cyclones. Mon. Wea. Rev., 141, 23252346, doi:10.1175/MWR-D-12-00257.1.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., and D. B. Dean, 1991: The Agnes rainstorm of June 1972: Surface feature evolution culminating in inland storm redevelopment. Wea. Forecasting, 6, 515537, doi:10.1175/1520-0434(1991)006<0515:TAROJS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 1993: Downstream development of baroclinic waves as inferred from regression analysis. J. Atmos. Sci., 50, 20382053, doi:10.1175/1520-0469(1993)050<2038:DDOBWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 1999: Characteristics of wave packets in the upper troposphere. Part II: Seasonal and hemispheric variations. J. Atmos. Sci., 56, 17291747, doi:10.1175/1520-0469(1999)056<1729:COWPIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 2000: Wave packets and life cycles of troughs in the upper troposphere: Examples from the Southern Hemisphere summer season of 1984/85. Mon. Wea. Rev., 128, 25–50, doi:10.1175/1520-0493(2000)128<0025:WPALCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., and I. Orlanski, 1993: On the dynamics of a storm track. J. Atmos. Sci., 50, 9991015, doi:10.1175/1520-0469(1993)050<0999:OTDOAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., and D. B. Yu, 1999: Characteristics of wave packets in the upper troposphere. Part I: Northern Hemisphere winter. J. Atmos. Sci., 56, 17081728, doi:10.1175/1520-0469(1999)056<1708:COWPIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Esler, J. G., and P. H. Haynes, 1999: Mechanisms for wave packet formation and maintenance in a quasigeostrophic two-layer model. J. Atmos. Sci., 56, 24572490, doi:10.1175/1520-0469(0)056<2457:MFWPFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ferreira, R. N., and W. H. Schubert, 1999: The role of tropical cyclones in the formation of tropical upper-tropospheric troughs. J. Atmos. Sci., 56, 28912907, doi:10.1175/1520-0469(1999)056<2891:TROTCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grams, C. M., S. C. Jones, C. A. Davis, P. A. Harr, and M. Weissmann, 2013a: The impact of Typhoon Jangmi (2008) on the midlatitude flow. Part I: Upper-level ridgebuilding and modification of the jet. Quart. J. Roy. Meteor. Soc.,139, 2148–2164, doi:10.1002/qj.2091.

  • Grams, C. M., S. C. Jones, and C. A. Davis, 2013b: The impact of Typhoon Jangmi (2008) on the midlatitude flow. Part II: Downstream evolution. Quart. J. Roy. Meteor. Soc.,139, 2165–2180, doi:10.1002/qj.2119.

  • Hakim, G. J., 2003: Developing wave packets in the North Pacific storm track. Mon. Wea. Rev., 131, 28242837, doi:10.1175/1520-0493(2003)131<2824:DWPITN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., 2005: Vertical structure of midlatitude analysis and forecast errors. Mon. Wea. Rev., 133, 567578, doi:10.1175/MWR-2882.1.

    • Search Google Scholar
    • Export Citation
  • Harr, P. A., and R. L. Elsberry, 2000: Extratropical transition of tropical cyclones over the western North Pacific. Part I: Evolution of structural characteristics during the transition process. Mon. Wea. Rev., 128, 26132633, doi:10.1175/1520-0493(2000)128<2613:ETOTCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harr, P. A., and J. M. Dea, 2009: Downstream development associated with the extratropical transition of tropical cyclones over the western North Pacific. Mon. Wea. Rev., 137, 12951319, doi:10.1175/2008MWR2558.1.

    • Search Google Scholar
    • Export Citation
  • Harr, P. A., R. L. Elsberry, and T. F. Hogan, 2000: Extratropical transition of tropical cyclones over the western North Pacific. Part II: The impact of midlatitude circulation characteristics. Mon. Wea. Rev., 128, 26342653, doi:10.1175/1520-0493(2000)128<2634:ETOTCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harr, P. A., D. Anwender, and S. C. Jones, 2008: Predictability associated with the downstream impacts of the extratropical transition of tropical cyclones: Methodology and a case study of Typhoon Nabi (2005). Mon. Wea. Rev., 136, 32053225, doi:10.1175/2008MWR2248.1.

    • Search Google Scholar
    • Export Citation
  • Hart, R. E., 2003: A cyclone phase space derived from thermal wind and thermal asymmetry. Mon. Wea. Rev., 131, 585616, doi:10.1175/1520-0493(2003)131<0585:ACPSDF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hart, R. E., and J. L. Evans, 2001: A climatology of the extratropical transition of Atlantic tropical cyclones. J. Climate, 14, 546564, doi:10.1175/1520-0442(2001)014<0546:ACOTET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and G. J. Hakim, 2013 :An Introduction to Dynamic Meteorology. Elsevier Academic Press, 532 pp.

  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, doi:10.1002/qj.49711147002.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., and Coauthors, 2003: The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions. Wea. Forecasting, 18, 10521092, doi:10.1175/1520-0434(2003)018<1052:TETOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Keller, J. H., S. J. Jones, and P. A. Harr, 2014: An eddy kinetic energy view of physical and dynamical processes in distinct forecast scenarios for the extratropical transition of two tropical cyclones. Mon. Wea. Rev., 142, 27512771, doi:10.1175/MWR-D-13-00219.1.

    • Search Google Scholar
    • Export Citation
  • Klein, P. M., P. A. Harr, and R. L. Elsberry, 2000: Extratropical transition of western North Pacific tropical cyclones: An overview and conceptual model of the transformation stage. Wea. Forecasting, 15, 373395, doi:10.1175/1520-0434(2000)015<0373:ETOWNP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klein, P. M., P. A. Harr, and R. L. Elsberry, 2002: Extratropical transition of western North Pacific tropical cyclones: Midlatitude and tropical cyclone contributions to reintensification. Mon. Wea. Rev., 130, 22402259, doi:10.1175/1520-0493(2002)130<2240:ETOWNP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Langland, R. H., M. A. Shapiro, and R. Gelaro, 2002: Initial condition sensitivity and error growth in forecasts of the 25 January 2000 East Coast snowstorm. Mon. Wea. Rev., 130, 957974, doi:10.1175/1520-0493(2002)130<0957:ICSAEG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, Q., T. Marchok, H.-L. Pan, M. Bender, and S. J. Lord, 2000: Improvements in hurricane initialization and forecasting at NCEP with global and regional (GFDL) models. Tech. Rep., NOAA Tech. Procedures Bull. 472, 7 pp.

  • Orlanski, I., and J. J. Katzfey, 1991: The life cycle of a cyclone wave in the Southern Hemisphere. Part I: Eddy energy budget. J. Atmos. Sci., 48, 19721998, doi:10.1175/1520-0469(1991)048<1972:TLCOAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., and J. P. Sheldon, 1995: Stages in the energetics of baroclinic systems. Tellus, 47A, 605628, doi:10.1034/j.1600-0870.1995.00108.x.

    • Search Google Scholar
    • Export Citation
  • Riemer, M., and S. C. Jones, 2010: The downstream impact of tropical cyclones on a developing baroclinic wave in idealized scenerios of extratropical transition. Quart. J. Roy. Meteor. Soc., 136, 617637, doi:10.1002/qj.605.

    • Search Google Scholar
    • Export Citation
  • Riemer, M., S. C. Jones, and C. A. Davis, 2008: The impact of extratropical transition on the downstream flow: An idealized modelling study with a straight jet. Quart. J. Roy. Meteor. Soc., 134, 6991, doi:10.1002/qj.189.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Sanders, F., and J. R. Gyakum, 1980: Synoptic-dynamic climatology of the “bomb.” Mon. Wea. Rev., 108, 15891606, doi:10.1175/1520-0493(1980)108<1589:SDCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and B. J. Hoskins, 1979: Downstream and upstream development of unstable baroclinic waves. J. Atmos. Sci., 36, 12391254, doi:10.1175/1520-0469(1979)036<1239:TDAUDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Swanson, K., and R. T. Pierrehumbert, 1994: Nonlinear wave packet evolution on a baroclinically unstable jet. J. Atmos. Sci., 51, 384396, doi:10.1175/1520-0469(1994)051<0384:DCCISF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Szunyogh, I., Z. Toth, R. E. Morss, S. J. Majumdar, B. J. Etherton, and C. H. Bishop, 2000: The effect of targeted dropsonde observations during the 1999 winter storm reconnaissance program. Mon. Wea. Rev., 128, 35203537, doi:10.1175/1520-0493(2000)128<3520:TEOTDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., 2010: Diagnosing the factors that influence downstream ridging during extratropical transition. J. Atmos. Sci., 67, 817833, doi:10.1175/2009JAS3093.1.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and G. J. Hakim, 2009: Initial condition sensitivity of western Pacific extratropical transitions determined using ensemble-based sensitivity analysis. Mon. Wea. Rev., 137, 33883406, doi:10.1175/2009MWR2879.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1677 1351 39
PDF Downloads 391 103 5