The More Rain, the Better the Model Performs—The Dependency of Quantitative Precipitation Forecast Skill on Rainfall Amount for Typhoons in Taiwan

Chung-Chieh Wang Department of Earth Sciences, National Taiwan Normal University, Taipei, Taiwan

Search for other papers by Chung-Chieh Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A strong dependency of model performance in quantitative precipitation forecasts (QPFs) as measured by scores such as the threat score (TS) on rainfall amount (i.e., the better the model performs when there is more rain), is demonstrated through real-time forecasts by the 2.5-km Cloud-Resolving Storm Simulator (CReSS) for 15 typhoons in Taiwan in 2010–12. Implied simply from the positive correlation between rain-area sizes and scores, this dependency is expected to exist in all regions, models, and rainfall regimes, while for typhoon QPFs in Taiwan it is also attributed to the model’s capability to properly handle (within 72 h) the processes leading to more rain, which are largely controlled by the typhoon’s track, size, structure, and environment, and the island’s topography. Because of this dependency, the performance of model QPFs for extreme events can be assessed accurately only when forecasts targeted for periods of comparable rainfall magnitude are included for averaging. For the most-rainy 24 h of the top-5 typhoons, the 0–24-h QPFs by CReSS have mean TS of 0.67, 0.67, 0.58, 0.51, and 0.32 at thresholds of 25, 50, 130, 200, and 350 mm, and 0.64, 0.57, 0.37, 0.33, and 0.22 from 48–72-h QPFs, respectively, suggesting superior performance even 2–2.5 days in advance. These scores are strikingly high, precisely because Taiwan can receive extreme rainfall from typhoons. For smaller (nonhazardous) events, the mean scores are progressively lower, but also unimportant and less representative statistically. Therefore, it is inappropriate to average scores over multiple forecasts as those for less-rainy periods would contaminate the result for key periods. The implication for forecasters is also discussed.

Corresponding author address: Chung-Chieh Wang, Department of Earth Sciences, National Taiwan Normal University. No. 88, Sec. 4, Ting-Chou Rd., Taipei 11677, Taiwan. E-mail: cwang@ntnu.edu.tw

Abstract

A strong dependency of model performance in quantitative precipitation forecasts (QPFs) as measured by scores such as the threat score (TS) on rainfall amount (i.e., the better the model performs when there is more rain), is demonstrated through real-time forecasts by the 2.5-km Cloud-Resolving Storm Simulator (CReSS) for 15 typhoons in Taiwan in 2010–12. Implied simply from the positive correlation between rain-area sizes and scores, this dependency is expected to exist in all regions, models, and rainfall regimes, while for typhoon QPFs in Taiwan it is also attributed to the model’s capability to properly handle (within 72 h) the processes leading to more rain, which are largely controlled by the typhoon’s track, size, structure, and environment, and the island’s topography. Because of this dependency, the performance of model QPFs for extreme events can be assessed accurately only when forecasts targeted for periods of comparable rainfall magnitude are included for averaging. For the most-rainy 24 h of the top-5 typhoons, the 0–24-h QPFs by CReSS have mean TS of 0.67, 0.67, 0.58, 0.51, and 0.32 at thresholds of 25, 50, 130, 200, and 350 mm, and 0.64, 0.57, 0.37, 0.33, and 0.22 from 48–72-h QPFs, respectively, suggesting superior performance even 2–2.5 days in advance. These scores are strikingly high, precisely because Taiwan can receive extreme rainfall from typhoons. For smaller (nonhazardous) events, the mean scores are progressively lower, but also unimportant and less representative statistically. Therefore, it is inappropriate to average scores over multiple forecasts as those for less-rainy periods would contaminate the result for key periods. The implication for forecasters is also discussed.

Corresponding author address: Chung-Chieh Wang, Department of Earth Sciences, National Taiwan Normal University. No. 88, Sec. 4, Ting-Chou Rd., Taipei 11677, Taiwan. E-mail: cwang@ntnu.edu.tw
Save
  • Akter, N., and K. Tsuboki, 2012: Numerical simulation of Cyclone Sidr using a cloud-resolving model: Characteristics and formation process of an outer rainband. Mon. Wea. Rev., 140, 789810, doi:10.1175/2011MWR3643.1.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416, doi:10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., A. Hollingsworth, F. Lalaurette, and A. Ghelli, 1999: Probabilistic predictions of precipitation using the ECMWF Ensemble Prediction System. Wea. Forecasting, 14, 168189, doi:10.1175/1520-0434(1999)014<0168:PPOPUT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Charba, J. P., and F. G. Samplatsky, 2011: High-resolution GFS-based MOS quantitative precipitation forecasts on a 4-km grid. Mon. Wea. Rev., 139, 3968, doi:10.1175/2010MWR3224.1.

    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., T.-C. Yeh, and J.-M. Chen, 1993: Effects of terrain on the surface structure of typhoons over Taiwan. Mon. Wea. Rev., 121, 734752, doi:10.1175/1520-0493(1993)121<0734:EOTOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., Y.-T. Yang, and H.-C. Kuo, 2013: Large increasing trend of tropical cyclone rainfall in Taiwan and the roles of terrain. J. Climate, 26, 41384147, doi:10.1175/JCLI-D-12-00463.1.

    • Search Google Scholar
    • Export Citation
  • Cheung, K. K. W., L.-R. Huang, and C.-S. Lee, 2008: Characteristics of rainfall during tropical cyclone periods in Taiwan. Nat. Hazards Earth Syst. Sci., 8, 14631474, doi:10.5194/nhess-8-1463-2008.

    • Search Google Scholar
    • Export Citation
  • Chien, F.-C., and H.-C. Kuo, 2011: On the extreme rainfall of Typhoon Morakot (2009). J. Geophys. Res., 116, D05104, doi:10.1029/2010JD015092.

    • Search Google Scholar
    • Export Citation
  • Chien, F.-C., Y.-C. Liu, and C.-S. Lee, 2008: Heavy rainfall and southwesterly flow after the leaving of Typhoon Mindulle (2004) from Taiwan. J. Meteor. Soc. Japan, 86, 1741, doi:10.2151/jmsj.86.17.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., W. A. Gallus Jr., and T.-C. Chen, 2007: Comparison of the diurnal precipitation cycle in convection-resolving and non-convection-resolving mesoscale models. Mon. Wea. Rev., 135, 34563473, doi:10.1175/MWR3467.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., W. A. Gallus Jr., M. Xue, and F. Kong, 2009: A comparison of precipitation forecast skill between small convection-allowing and large convection-parameterizing ensembles. Wea. Forecasting, 24, 11211140, doi:10.1175/2009WAF2222222.1.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., G. J. Tripoli, R. M. Rauber, and E. A. Mulvihill, 1986: Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall. J. Climate Appl. Meteor., 25, 16581680, doi:10.1175/1520-0450(1986)025<1658:NSOTEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cuo, L., T. C. Pagano, and Q. J. Wang, 2011: A review of quantitative precipitation forecasts and their use in short- to medium-range streamflow forecasting. J. Hydrometeor., 12, 713728, doi:10.1175/2011JHM1347.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C., B. Brown, and R. Bullock, 2006: Object-based verification of precipitation forecasts. Part I: Methodology and application to mesoscale rain areas. Mon. Wea. Rev., 134, 17721784, doi:10.1175/MWR3145.1.

    • Search Google Scholar
    • Export Citation
  • Done, J., C. A. Davis, and M. Weisman, 2004: The next generation of NWP: Explicit forecasts of convection using the weather research and forecasting (WRF) model. Atmos. Res. Lett., 5, 110117, doi:10.1002/asl.72.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., R. Davies-Jones, and D. K. Keller, 1990: On summary measures of skills in rare event forecasting based on contingency tables. Wea. Forecasting, 5, 576585, doi:10.1175/1520-0434(1990)005<0576:OSMOSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Du, J., S. L. Mullen, and F. Sanders, 1997: Short-range ensemble forecasting of quantitative precipitation. Mon. Wea. Rev., 125, 24272459, doi:10.1175/1520-0493(1997)125<2427:SREFOQ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., and J. L. McBride, 2000: Verification of precipitation in weather systems: Determination of systematic errors. J. Hydrol., 239, 179202, doi:10.1016/S0022-1694(00)00343-7.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., U. Damrath, W. Wergen, and M. E. Baldwin, 2003: The WGNE assessment of short-term quantitative precipitation forecasts (QPFs) from operational numerical weather prediction models. Bull. Amer. Meteor. Soc., 84, 481492, doi:10.1175/BAMS-84-4-481.

    • Search Google Scholar
    • Export Citation
  • Elsberry, R., H.-C. Kuo, G.-F. Lin, and E. Shamir, Eds., 2013: Editorial—Special issue of journal of hydrology on typhoon hydrometeorology. J. Hydrol., 506, 13, doi:10.1016/j.jhydrol.2013.10.046.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and R. E. Carbone, 2004: Improving quantitative precipitation forecasts in the warm season: A USWRP research and development strategy. Bull. Amer. Meteor. Soc., 85, 955965, doi:10.1175/BAMS-85-7-955.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and Coauthors, 1998: Quantitative precipitation forecasting: Report of the eighth prospectus development team, U.S. Weather Research Program. Bull. Amer. Meteor. Soc., 79, 285299, doi:10.1175/1520-0477(1998)079<0285:QPFROT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Golding, B. W., 2000: Quantitative precipitation forecasting in the UK. J. Hydrol., 239, 286305, doi:10.1016/S0022-1694(00)00354-1.

  • Grubišić, V., R. K. Vellore, and A. W. Huggins, 2005: Quantitative precipitation forecasting of wintertime storms in the Sierra Nevada: Sensitivity to the microphysical parameterization and horizontal resolution. Mon. Wea. Rev., 133, 28342859, doi:10.1175/MWR3004.1.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., J. R. Moskaitis, Y. Jin, R. M. Hodur, J. D. Doyle, and M. S. Peng, 2011: Prediction and diagnosis of Typhoon Morakot (2009) using the Naval Research Laboratory’s mesoscale tropical cyclone model. Terr. Atmos. Oceanic Sci., 22, 579594, doi:10.3319/TAO.2011.05.30.01(TM).

    • Search Google Scholar
    • Export Citation
  • Hong, J.-S., 2003: Evaluation of the high-resolution model forecasts over the Taiwan area during GIMEX. Wea. Forecasting, 18, 836846, doi:10.1175/1520-0434(2003)018<0836:EOTHMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hsu, J., 1998: ARMTS up and running in Taiwan. Väisälä News, 146, 2426.

  • Hsu, L.-H., H.-C. Kuo, and R. G. Fovell, 2013: On the geographic asymmetry of typhoon translation speed across the mountainous island of Taiwan. J. Atmos. Sci., 70, 10061022, doi:10.1175/JAS-D-12-0173.1.

    • Search Google Scholar
    • Export Citation
  • Ikawa, M., and K. Saito, 1991: Description of a nonhydrostatic model developed at the Forecast Research Department of the MRI. MRI Tech. Rep. 28, 238 pp.

  • Johnson, L. E., and B. G. Olsen, 1998: Assessment of quantitative precipitation forecasts. Wea. Forecasting, 13, 7583, doi:10.1175/1520-0434(1998)013<0075:AOQPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jolliffe, I. T., and D. B. Stephenson, 2003: Forecast Verification: A Practitioner’s Guide in Atmospheric Science.Wiley and Sons, 240 pp.

  • Junker, N. W., J. E. Hoke, B. E. Sullivan, K. F. Brill, and F. J. Hughes, 1992: Seasonal and geographic variations in quantitative precipitation prediction by NMC’s Nested-Grid Model and Medium-Range Forecast Model. Wea. Forecasting, 7, 410429, doi:10.1175/1520-0434(1992)007<0410:SAGVIQ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., M. Kanamitsu, and W. E. Baker, 1990: Global numerical weather prediction at the National Meteorological Center. Bull. Amer. Meteor. Soc., 71, 14101428, doi:10.1175/1520-0477(1990)071<1410:GNWPAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., 1989: Description of the NMC global data assimilation and forecast system. Wea. Forecasting, 4, 335342, doi:10.1175/1520-0434(1989)004<0335:DOTNGD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., D. F. Parrish, J. C. Derber, R. Treadon, W. S. Wu, and S. Lord, 2009: Introduction of the GSI into the NCEP global data assimilation system. Wea. Forecasting, 24, 16911705, doi:10.1175/2009WAF2222201.1.

    • Search Google Scholar
    • Export Citation
  • Kondo, J., 1976: Heat balance of the China Sea during the air mass transformation experiment. J. Meteor. Soc. Japan, 54, 382398.

  • Lee, C.-S., and Coauthors, 2013: Assessment of sewer flooding model based on ensemble quantitative precipitation forecast. J. Hydrol., 506, 101113, doi:10.1016/j.jhydrol.2012.09.053.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, A. Q., G. W. K. Moore, K. Tsuboki, and I. A. Renfrew, 2004: A high-resolution simulation of convective roll clouds during a cold-air outbreak. Geophys. Res. Lett., 31, L03101, doi:10.1029/2003GL018530.

    • Search Google Scholar
    • Export Citation
  • Liu, C., M. W. Moncrieff, J. D. Tuttle, and R. E. Carbone, 2006: Explicit and parameterized episodes of warm-season precipitation over the continental United States. Adv. Atmos. Sci., 23, 91105, doi:10.1007/s00376-006-0010-9.

    • Search Google Scholar
    • Export Citation
  • Louis, J. F., M. Tiedtke, and J. F. Geleyn, 1981: A short history of the operational PBL parameterization at ECMWF. Workshop on Planetary Boundary Layer Parameterization, Reading, United Kingdom, ECMWF, 59–79.

  • Maesaka, T., G. W. K. Moore, Q. Liu, and K. Tsuboki, 2006: A simulation of a lake effect snowstorm with a cloud resolving numerical model. Geophys. Res. Lett., 33, L20813, doi:10.1029/2006GL026638.

    • Search Google Scholar
    • Export Citation
  • Marchok, T., R. Rogers, and R. Tuleya, 2007: Validation schemes for tropical cyclone quantitative precipitation forecasts: Evaluation of operational models for U.S. landfalling cases. Wea. Forecasting, 22, 726746, doi:10.1175/WAF1024.1.

    • Search Google Scholar
    • Export Citation
  • Marzban, C., and S. Sandgathe, 2006: Cluster analysis for verification of precipitation fields. Wea. Forecasting, 21, 824838, doi:10.1175/WAF948.1.

    • Search Google Scholar
    • Export Citation
  • Mason, I. B., 2003: Binary events. Forecast Verification—A Practitioner’s Guide in Atmospheric Science, I. T. Jolliffe and D. B. Stephenson, Eds., Wiley and Sons, 37–76.

  • McBride, J. L., and E. E. Ebert, 2000: Verification of quantitative precipitation forecasts from operational numerical weather prediction models over Australia. Wea. Forecasting, 15, 103121, doi:10.1175/1520-0434(2000)015<0103:VOQPFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1974: A hierarchy of turbulent closure models for planetary boundary layers. J. Atmos. Sci., 31, 17911806, doi:10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., 1996: Improvements in quantitative precipitation forecasts with the Eta regional model at the National Centers for Environmental Prediction: The 48-km upgrade. Bull. Amer. Meteor. Soc., 77, 26372649, doi:10.1175/1520-0477(1996)077<2637:IIQPFW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and T. L. Black, 1992: On the impact on forecast accuracy of the step-mountain (eta) vs. sigma coordinate. Meteor. Atmos. Phys., 50, 4760, doi:10.1007/BF01025504.

    • Search Google Scholar
    • Export Citation
  • Moorthi, S., H. L. Pan, and P. Caplan, 2001: Changes to the 2001 NCEP operational MRF/AVN global analysis/forecast system. Tech. Procedures Bull. 484, Office of Meteorology, National Weather Service, 14 pp.

  • Mullen, S. L., and R. Buizza, 2001: Quantitative precipitation forecasts over the United States by the ECMWF Ensemble Prediction System. Mon. Wea. Rev., 129, 638663, doi:10.1175/1520-0493(2001)129<0638:QPFOTU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Murakami, M., 1990: Numerical modeling of dynamical and microphysical evolution of an isolated convective cloud—The 19 July 1981 CCOPE cloud. J. Meteor. Soc. Japan, 68, 107128.

    • Search Google Scholar
    • Export Citation
  • Murakami, M., T. L. Clark, and W. D. Hall, 1994: Numerical simulations of convective snow clouds over the Sea of Japan: Two-dimensional simulation of mixed layer development and convective snow cloud formation. J. Meteor. Soc. Japan, 72, 4362.

    • Search Google Scholar
    • Export Citation
  • Olson, D. A., N. W. Junker, and B. Korty, 1995: Evaluation of 33 years of quantitative precipitation forecasting at the NMC. Wea. Forecasting, 10, 498511, doi:10.1175/1520-0434(1995)010<0498:EOYOQP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2005: Improving short-term (0-48 h) cool-season quantitative precipitation forecasting: Recommendations from a USWRP workshop. Bull. Amer. Meteor. Soc., 86, 16191632, doi:10.1175/BAMS-86-11-1619.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., E. Sukovich, D. Reynolds, M. Dettinger, S. Weagle, W. Clark, and P. J. Neiman, 2010: Assessment of extreme quantitative precipitation forecasts and development of regional extreme event thresholds using data from HMT-2006 and COOP observers. J. Hydrometeor., 11, 12861304, doi:10.1175/2010JHM1232.1.

    • Search Google Scholar
    • Export Citation
  • Reynolds, D., 2003: Value-added quantitative precipitation forecasts. How valuable is the forecaster? Bull. Amer. Meteor. Soc., 84, 876878, doi:10.1175/BAMS-84-7-876.

    • Search Google Scholar
    • Export Citation
  • Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, doi:10.1175/2007MWR2123.1.

    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., 1990: The critical success index as an indicator of warning skill. Wea. Forecasting, 5, 570575, doi:10.1175/1520-0434(1990)005<0570:TCSIAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Segami, A., K. Kurihara, H. Nakamura, M. Ueno, I. Takano, and Y. Tatsumi, 1989: Operational mesoscale weather prediction with Japan Spectral Model. J. Meteor. Soc. Japan, 67, 907924.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468 STR, 88 pp.

  • Tsuboki, K., and A. Sakakibara, 2002: Large-scale parallel computing of cloud resolving storm simulator. High Performance Computing, H. P. Zima et al., Eds., Springer, 243–259.

  • Tsuboki, K., and A. Sakakibara, 2007: Numerical Prediction of High-Impact Weather Systems: The Textbook for the Seventeenth IHP Training Course in 2007. Hydrospheric Atmospheric Research Center, Nagoya University, and UNESCO, 273 pp.

  • Tuleya, R. E., M. DeMaria, and R. J. Kuligowski, 2007: Evaluation of GFDL and simple statistical model rainfall forecasts for U.S. landfalling tropical storms. Wea. Forecasting, 22, 5670, doi:10.1175/WAF972.1.

    • Search Google Scholar
    • Export Citation
  • Walser, A., and C. Schär, 2004: Convection-resolving precipitation forecasting and its predictability in Alpine river catchments. J. Hydrol., 288, 5773, doi:10.1016/j.jhydrol.2003.11.035.

    • Search Google Scholar
    • Export Citation
  • Walser, A., D. Lüthi, and C. Schär, 2004: Predictability of precipitation in a cloud-resolving model. Mon. Wea. Rev., 132, 560577, doi:10.1175/1520-0493(2004)132<0560:POPIAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, C.-C., 2014: On the calculation and correction of equitable threat score for model quantitative precipitation forecasts for small verification areas: The example of Taiwan. Wea. Forecasting, 29, 788798, doi:10.1175/WAF-D-13-00087.1.

    • Search Google Scholar
    • Export Citation
  • Wang, C.-C., G. T.-J. Chen, S.-C. Yang, and K. Tsuboki, 2009: Wintertime supercell thunderstorms in a subtropical environment: Numerical simulation. Mon. Wea. Rev., 137, 21752202, doi:10.1175/2008MWR2616.1.

    • Search Google Scholar
    • Export Citation
  • Wang, C.-C., G. T.-J. Chen, and S.-Y. Huang, 2011: Remote trigger of deep convection by cold outflow over the Taiwan Strait in the mei-yu season: A modeling study of the 8 June 2007 case. Mon. Wea. Rev., 139, 28542875, doi:10.1175/2011MWR3613.1.

    • Search Google Scholar
    • Export Citation
  • Wang, C.-C., H.-C. Kuo, Y.-H. Chen, H.-L. Huang, C.-H. Chung, and K. Tsuboki, 2012: Effects of asymmetric latent heating on typhoon movement crossing Taiwan: The case of Morakot (2009) with extreme rainfall. J. Atmos. Sci., 69, 31723196, doi:10.1175/JAS-D-11-0346.1.

    • Search Google Scholar
    • Export Citation
  • Wang, C.-C., Y.-H. Chen, H.-C. Kuo, and S.-Y. Huang, 2013a: Sensitivity of typhoon track to asymmetric latent heating/rainfall induced by Taiwan topography: A numerical study of Typhoon Fanapi (2010). J. Geophys. Res. Atmos., 118, 32923308, doi:10.1002/jgrd.50351.

    • Search Google Scholar
    • Export Citation
  • Wang, C.-C., H.-C. Kuo, T.-C. Yeh, C.-H. Chung, Y.-H. Chen, S.-Y. Huang, Y.-W. Wang, and C.-H. Liu, 2013b: High-resolution quantitative precipitation forecasts and simulations by the Cloud-Resolving Storm Simulator (CReSS) for Typhoon Morakot (2009). J. Hydrol., 506, 2641, doi:10.1016/j.jhydrol.2013.02.018.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., M. Paulat, M. Hagen, and C. Frei, 2008: SAL—A novel quality measure for the verification of quantitative precipitation forecasts. Mon. Wea. Rev., 136, 44704487, doi:10.1175/2008MWR2415.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences. Academic Press, 467 pp.

  • Wu, C.-C., C.-Y. Huang, M.-J. Yang, F.-C. Chien, J.-S. Hong, and T.-H. Yen, 2010: Typhoon Morakot (2009) and a special review on the current status and future challenge of tropical cyclone simulation (in Chinese with English abstract). Atmos. Sci., 38, 99134.

    • Search Google Scholar
    • Export Citation
  • Wu, L., J. Liang, and C.-C. Wu, 2011: Monsoonal influence on Typhoon Morakot (2009). Part I: Observational analysis. J. Atmos. Sci., 68, 22082221, doi:10.1175/2011JAS3730.1.

    • Search Google Scholar
    • Export Citation
  • Yamada, H., T. Nasuno, W. Yanase, and M. Satoh, 2013: Westward “propagating” typhoons in the tropical western Pacific. Preprints, Conf. on Mesoscale Convective Systems and High-Impact Weather in East Asia (ICMCS-IX), Beijing, China, Chinese Academy of Meteorological Sciences, 205.

  • Yuan, H., S. L. Mullen, X. Gao, S. Sorooshian, J. Du, and H.-M. H. Juang, 2005: Verification of probabilistic quantitative precipitation forecasts over the southwest United States during winter 2002/03 by the RSM Ensemble System. Mon. Wea. Rev., 133, 279294, doi:10.1175/MWR-2858.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., A. M. Odins, and J. W. Nielsen-Gammon, 2006: Mesoscale predictability of an extreme warm-season precipitation event. Wea. Forecasting, 21, 149166, doi:10.1175/WAF909.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1994 1524 44
PDF Downloads 312 57 5