Linear Filtering of Sample Covariances for Ensemble-Based Data Assimilation. Part II: Application to a Convective-Scale NWP Model

Benjamin Ménétrier Centre National de Recherches Météorologiques–Groupe d’étude de l’Atmosphère Météorologique, Météo-France/CNRS, Toulouse, France

Search for other papers by Benjamin Ménétrier in
Current site
Google Scholar
PubMed
Close
,
Thibaut Montmerle Centre National de Recherches Météorologiques–Groupe d’étude de l’Atmosphère Météorologique, Météo-France/CNRS, Toulouse, France

Search for other papers by Thibaut Montmerle in
Current site
Google Scholar
PubMed
Close
,
Yann Michel Centre National de Recherches Météorologiques–Groupe d’étude de l’Atmosphère Météorologique, Météo-France/CNRS, Toulouse, France

Search for other papers by Yann Michel in
Current site
Google Scholar
PubMed
Close
, and
Loïk Berre Centre National de Recherches Météorologiques–Groupe d’étude de l’Atmosphère Météorologique, Météo-France/CNRS, Toulouse, France

Search for other papers by Loïk Berre in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In Part I of this two-part study, a new theory for optimal linear filtering of covariances sampled from an ensemble of forecasts was detailed. This method, especially designed for data assimilation (DA) schemes in numerical weather prediction (NWP) systems, has the advantage of using optimality criteria that involve sample estimated quantities and filter output only. In this second part, the theory is tested with real background error covariances computed using a large ensemble data assimilation (EDA) at the convective scale coupled with a large EDA at the global scale, based respectively on the Applications of Research to Operations at Mesoscale (AROME) and ARPEGE operational NWP systems. Background error variances estimated with a subset of this ensemble are filtered and evaluated against values obtained with the remaining members, which are considered as an independent reference. Algorithms presented in Part I show relevant results, with the homogeneous filtering being quasi optimal. Heterogeneous filtering is also successfully tested with different local criteria, yet at a higher computational cost, showing the full generality of the method. As a second application, horizontal and vertical localization functions are diagnosed from the ensemble, providing pertinent localization length scales that consistently depend on the number of members, on the meteorological variables, and on the vertical levels.

Corresponding author address: Benjamin Ménétrier, CNRM-GAME/GMAP 42 avenue G. Coriolis, 31057 Toulouse, France. E-mail: benjamin.menetrier@meteo.fr

Abstract

In Part I of this two-part study, a new theory for optimal linear filtering of covariances sampled from an ensemble of forecasts was detailed. This method, especially designed for data assimilation (DA) schemes in numerical weather prediction (NWP) systems, has the advantage of using optimality criteria that involve sample estimated quantities and filter output only. In this second part, the theory is tested with real background error covariances computed using a large ensemble data assimilation (EDA) at the convective scale coupled with a large EDA at the global scale, based respectively on the Applications of Research to Operations at Mesoscale (AROME) and ARPEGE operational NWP systems. Background error variances estimated with a subset of this ensemble are filtered and evaluated against values obtained with the remaining members, which are considered as an independent reference. Algorithms presented in Part I show relevant results, with the homogeneous filtering being quasi optimal. Heterogeneous filtering is also successfully tested with different local criteria, yet at a higher computational cost, showing the full generality of the method. As a second application, horizontal and vertical localization functions are diagnosed from the ensemble, providing pertinent localization length scales that consistently depend on the number of members, on the meteorological variables, and on the vertical levels.

Corresponding author address: Benjamin Ménétrier, CNRM-GAME/GMAP 42 avenue G. Coriolis, 31057 Toulouse, France. E-mail: benjamin.menetrier@meteo.fr
Save
  • Anderson, J. L., 2007: Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter. Physica D, 230, 99111, doi:10.1016/j.physd.2006.02.011.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2012: Localization and sampling error correction in ensemble Kalman filter data assimilation. Mon. Wea. Rev., 140, 23592371, doi:10.1175/MWR-D-11-00013.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and L. Lei, 2013: Empirical localization of observation impact in ensemble Kalman filters. Mon. Wea. Rev., 141, 41404153, doi:10.1175/MWR-D-12-00330.1.

    • Search Google Scholar
    • Export Citation
  • Bannister, R. N., 2008: A review of forecast error covariance statistics in atmospheric variational data assimilation. II: Modelling the forecast error covariance statistics. Quart. J. Roy. Meteor. Soc., 134, 19711996, doi:10.1002/qj.340.

    • Search Google Scholar
    • Export Citation
  • Berre, L., 2000: Estimation of synoptic and mesoscale forecast error covariances in a limited-area model. Mon. Wea. Rev., 128, 644667, doi:10.1175/1520-0493(2000)128<0644:EOSAMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Berre, L., and G. Desroziers, 2010: Filtering of background error variances and correlations by local spatial averaging: A review. Mon. Wea. Rev., 138, 36933720, doi:10.1175/2010MWR3111.1.

    • Search Google Scholar
    • Export Citation
  • Berre, L., S. Stefanescu, and M. Belo Pereira, 2006: The representation of the analysis effect in three error simulation techniques. Tellus, 58A, 196209, doi:10.1111/j.1600-0870.2006.00165.x.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., and D. Hodyss, 2007: Flow-adaptive moderation of spurious ensemble correlations and its use in ensemble-based data assimilation. Quart. J. Roy. Meteor. Soc., 133, 20292044, doi:10.1002/qj.169.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., and D. Hodyss, 2009a: Ensemble covariances adaptively localized with ECO-RAP. Part 1: Tests on simple error models. Tellus, 61A, 8496, doi:10.1111/j.1600-0870.2008.00371.x.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., and D. Hodyss, 2009b: Ensemble covariances adaptively localized with ECO-RAP. Part 2: A strategy for the atmosphere. Tellus, 61A, 97111, doi:10.1111/j.1600-0870.2008.00372.x.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., and D. Hodyss, 2011: Adaptive ensemble covariance localization in ensemble 4D-VAR state estimation. Mon. Wea. Rev., 139, 12411255, doi:10.1175/2010MWR3403.1.

    • Search Google Scholar
    • Export Citation
  • Bonavita, M., L. Isaksen, and E. Holm, 2012: On the use of EDA background error variances in the ECMWF 4D-Var. Quart. J. Roy. Meteor. Soc., 138, 15401559, doi:10.1002/qj.1899.

    • Search Google Scholar
    • Export Citation
  • Brousseau, P., L. Berre, F. Bouttier, and G. Desroziers, 2011: Background-error covariances for a convective-scale data-assimilation system: AROME-France 3D-Var. Quart. J. Roy. Meteor. Soc., 137, 409422, doi:10.1002/qj.750.

    • Search Google Scholar
    • Export Citation
  • Brousseau, P., L. Berre, F. Bouttier, and G. Desroziers, 2012: Flow-dependent background-error covariances for a convective-scale data assimilation system. Quart. J. Roy. Meteor. Soc., 138, 310322, doi:10.1002/qj.920.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., 2005: Ensemble-derived stationary and flow-dependent background-error covariances: Evaluation in a quasi-operational NWP setting. Quart. J. Roy. Meteor. Soc., 131, 10131043, doi:10.1256/qj.04.15.

    • Search Google Scholar
    • Export Citation
  • Campbell, W. F., C. H. Bishop, and D. Hodyss, 2010: Vertical covariance localization for satellite radiances in ensemble Kalman filters. Mon. Wea. Rev., 138, 282290, doi:10.1175/2009MWR3017.1.

    • Search Google Scholar
    • Export Citation
  • Clayton, A. M., A. C. Lorenc, and D. M. Barker, 2013: Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met Office. Quart. J. Roy. Meteor. Soc., 139, 14451461, doi:10.1002/qj.2054.

    • Search Google Scholar
    • Export Citation
  • Daley, R., 1991: Atmospheric Data Analysis. Cambridge University Press, 460 pp.

  • Derber, J., and F. Bouttier, 1999: A reformulation of the background error covariance in the ECMWF global data assimilation system. Tellus, 51A, 195221, doi:10.1034/j.1600-0870.1999.t01-2-00003.x.

    • Search Google Scholar
    • Export Citation
  • Drobinski, P., and Coauthors, 2014: HyMeX: A 10-year multidisciplinary program on the Mediterranean water cycle. Bull. Amer. Meteor. Soc., 95, 1063–1082, doi:10.1175/BAMS-D-12-00242.1.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte-Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162, doi:10.1029/94JC00572.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796811, doi:10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 2001: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 129, 123137, doi:10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., 2003: The potential of the ensemble Kalman filter for NWP—A comparison with 4D-Var. Quart. J. Roy. Meteor. Soc., 129, 31833203, doi:10.1256/qj.02.132.

    • Search Google Scholar
    • Export Citation
  • Ménétrier, B., and T. Montmerle, 2011: Heterogeneous background-error covariances for the analysis and forecast of fog events. Quart. J. Roy. Meteor. Soc., 137, 20042013, doi:10.1002/qj.802.

    • Search Google Scholar
    • Export Citation
  • Ménétrier, B., T. Montmerle, L. Berre, and Y. Michel, 2014: Estimation and diagnosis of heterogeneous flow-dependent background-error covariances at the convective scale using either large or small ensembles. Quart. J. Roy. Meteor. Soc., 140, 2050–2061, doi:10.1002/qj.2267.

    • Search Google Scholar
    • Export Citation
  • Ménétrier, B., T. Montmerle, Y. Michel, and L. Berre, 2015: Linear filtering of sample covariances for ensemble-based data assimilation. Part I: Optimality criteria and application to variance filtering and covariance localization. Mon. Wea. Rev., 143, 16341655, doi:10.1175/MWR-D-14-00157.1.

    • Search Google Scholar
    • Export Citation
  • Montmerle, T., and C. Faccani, 2009: Mesoscale assimilation of radial velocities from Doppler radars in a preoperational framework. Mon. Wea. Rev., 137, 19391953, doi:10.1175/2008MWR2725.1.

    • Search Google Scholar
    • Export Citation
  • Montmerle, T., and L. Berre, 2010: Diagnosis and formulation of heterogeneous background-error covariances at the mesoscale. Quart. J. Roy. Meteor. Soc., 136, 14081420, doi:10.1002/qj.655.

    • Search Google Scholar
    • Export Citation
  • Montmerle, T., F. Rabier, and C. Fischer, 2007: Relative impact of polar-orbiting and geostationary satellite radiances in the ALADIN/France numerical weather prediction system. Quart. J. Roy. Meteor. Soc., 133, 655671, doi:10.1002/qj.34.

    • Search Google Scholar
    • Export Citation
  • Purser, R. J., W.-S. Wu, D. F. Parrish, and N. M. Roberts, 2003a: Numerical aspects of the application of recursive filters to variational statistical analysis. Part I: Spatially homogeneous and isotropic Gaussian covariances. Mon. Wea. Rev., 131, 15241535, doi:10.1175//1520-0493(2003)131<1524:NAOTAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Purser, R. J., W.-S. Wu, D. F. Parrish, and N. M. Roberts, 2003b: Numerical aspects of the application of recursive filters to variational statistical analysis. Part II: Spatially inhomogeneous and anisotropic general covariances. Mon. Wea. Rev., 131, 15361548, doi:10.1175//2543.1.

    • Search Google Scholar
    • Export Citation
  • Raynaud, L., L. Berre, and G. Desroziers, 2009: Objective filtering of ensemble-based background-error variances. Quart. J. Roy. Meteor. Soc., 135, 11771199, doi:10.1002/qj.438.

    • Search Google Scholar
    • Export Citation
  • Seity, Y., P. Brousseau, S. Malardel, G. Hello, P. Bénard, F. Bouttier, C. Lac, and V. Masson, 2011: The AROME-France convective-scale operational model. Mon. Wea. Rev., 139, 976991, doi:10.1175/2010MWR3425.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192, doi:10.1029/2000JD900719.

    • Search Google Scholar
    • Export Citation
  • Wattrelot, E., O. Caumont, and J.-F. Mahfouf, 2014: Operational implementation of the 1D+3D-Var assimilation method of radar reflectivity data in the AROME model. Mon. Wea. Rev., 142, 1852–1873, doi:10.1175/MWR-D-13-00230.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., Y. Weng, J. A. Sippel, Z. Meng, and C. H. Bishop, 2009: Cloud-resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 137, 21052125, doi:10.1175/2009MWR2645.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 950 503 28
PDF Downloads 373 58 6