• Barron, C. N., , L. F. Smedstad, , J. M. Dastugue, , and O. M. Smedstad, 2007: Evaluation of ocean models using observed and simulated drifter trajectories: Impact of sea surface height on synthetic profiles for data assimilation. J. Geophys. Res., 112, C07019, doi:10.1029/2006JC003982.

    • Search Google Scholar
    • Export Citation
  • Bennett, A. F., 2002: Inverse Modeling of the Ocean and Atmosphere. Cambridge University Press, 234 pp.

  • Carrier, M. J., , H. Ngodock, , S. Smith, , G. Jacobs, , P. Muscarella, , T. Ozgokmen, , B. Haus, , and B. L. Lipphardt Jr., 2014: Impact of assimilating ocean velocity observations inferred from Lagrangian drifter data using the NCOM-4DVAR. Mon. Wea. Rev., 142, 15091524, doi:10.1175/MWR-D-13-00236.1.

    • Search Google Scholar
    • Export Citation
  • Chua, B. S., , and A. F. Bennett, 2001: An inverse ocean modeling system. Ocean Modell., 3, 137165, doi:10.1016/S1463-5003(01)00006-3.

  • Cummings, J. A., 2005: Operational multivariate ocean data assimilation. Quart. J. Roy. Meteor. Soc., 131, 35833604, doi:10.1256/qj.05.105.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., , A. F. Bennett, , and M. G. G. Foreman, 1994: TOPEX/POSEIDON tides estimated using a global inverse model. J. Geophys. Res., 99, 24 82124 852, doi:10.1029/94JC01894.

    • Search Google Scholar
    • Export Citation
  • Huntley, H. S., , B. L. Lipphardt Jr., , and A. D. Kirwan Jr., 2011: Lagrangian predictability assessed in the East China Sea. Ocean Modell., 36, 163178, doi:10.1016/j.ocemod.2010.11.001.

    • Search Google Scholar
    • Export Citation
  • Ide, K., , L. Kuznetsov, , and C. K. R. T. Jone, 2002: Lagrangian data assimilation for point vortex systems. J. Turbul.,3, N53, doi:10.1088/1468-5248/3/1/053.

  • Jacobs, G. A., , J. G. Richman, , J. D. Doyle, , P. L. Spence, , B. P. Bartels, , C. N. Barron, , R. W. Helber, , and F. L. Bub, 2014a: Simulating conditional deterministic predictability within ocean frontogenesis. Ocean Modell., 78, 116, doi:10.1016/j.ocemod.2014.02.004.

    • Search Google Scholar
    • Export Citation
  • Jacobs, G. A., and et al. , 2014b: Data assimilation considerations for improved ocean predictability during the Gulf of Mexico Grand Lagrangian Deployment (GLAD). Ocean Modell., 83, 98117, doi:10.1016/j.ocemod.2014.09.003.

    • Search Google Scholar
    • Export Citation
  • Kuznetsov, L., , K. Ide, , and C. K. R. T. Jones, 2003: A method for assimilation of Lagrangian data. Mon. Wea. Rev., 131, 22472260, doi:10.1175/1520-0493(2003)131<2247:AMFAOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Martin, P. J., 2000: Description of the Navy Coastal Ocean Model version 1.0. NRL Rep. NRL/FR/7322/00/9962/, 45 pp. [Available from NRL, Code 7322, Bldg. 1009, Stennis Space Center, MS 39529-5004.]

  • Molcard, A., , A. Griffa, , and T. M. Özgökmen, 2005: Lagrangian data assimilation in multilayer primitive equation ocean models. J. Atmos. Oceanic Technol., 22, 7083, doi:10.1175/JTECH-1686.1.

    • Search Google Scholar
    • Export Citation
  • Ngodock, H. E., 2005: Efficient implementation of covariance multiplication for data assimilation with the representer method. Ocean Modell., 8, 237251, doi:10.1016/j.ocemod.2003.12.005.

    • Search Google Scholar
    • Export Citation
  • Ngodock, H. E., , and M. J. Carrier, 2013: A weak constraint 4D-Var assimilation system for the Navy coastal ocean model using the representer method. Data Assimilation for Atmospheric, Oceanic, and Hydrologic Applications, Vol. II, S. K. Park and L. Xu, Eds., Springer-Verlag, 367–390, doi:10.1007/978-3-642-35088-7_15.

  • Ngodock, H. E., , and M. J. Carrier, 2014: A 4DVAR system for the Navy Coastal Ocean Model. Part I: System description and assimilation of synthetic observations in Monterey Bay. Mon. Wea. Rev., 142, 20852107, doi:10.1175/MWR-D-13-00221.1.

    • Search Google Scholar
    • Export Citation
  • Nodet, M., 2006: Variational assimilation of Lagrangian data in oceanography. Inverse Probl., 22, 245263, doi:10.1088/0266-5611/22/1/014.

    • Search Google Scholar
    • Export Citation
  • Özgökmen, T. M., , A. Molcard, , T. M. Chin, , L. I. Piterbarg, , and A. Griffa, 2003: Assimilation of drifter positions in primitive equation models of midlatitude ocean circulation. J. Geophys. Res., 108, 3238, doi:10.1029/2002JC001719.

    • Search Google Scholar
    • Export Citation
  • Poje, A. C., and et al. , 2014: Submesoscale dispersion in the vicinity of the Deepwater Horizon spill. Proc. Natl. Acad. Sci. USA, 111, 12 693–12 698, doi:10.1073/pnas.1402452111.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and et al. , 2001: Argo: The global array of profiling floats. Observing the Oceans in the 21st Century, C. J. Koblinsky and N. R. Smith, Eds., Melbourne Bureau of Meterorology, 248–258.

  • Rosmond, T. E., , J. Teixeria, , M. Peng, , T. F. Hogan, , and R. Pauley, 2002: Navy Operational Global Atmospheric Prediction Systems (NOGAPS): Forcing for ocean models. Oceanography, 15, 99108, doi:10.5670/oceanog.2002.40.

    • Search Google Scholar
    • Export Citation
  • Taillandier, V., , A. Griffa, , P.-M. Poulain, , and K. Béranger, 2006: Assimilation of Agro float positions in the north western Mediterranean Sea and impact on ocean circulation simulations. Geophys. Res. Lett., 33, L11604, doi:10.1029/2005GL025552.

    • Search Google Scholar
    • Export Citation
  • Thompson, K. R., , J. Y. Sheng, , P. C. Smith, , and L. Z. Cong, 2003: Prediction of surface currents and drifter trajectories on the inner Scotian Shelf. J. Geophys. Res., 108, 3287, doi:10.1029/2001JC001119.

    • Search Google Scholar
    • Export Citation
  • Toner, M., , A. D. Kirwan Jr., , L. H. Kantha, , and J. K. Choi, 2001: Can general circulation models be assessed and their output enhanced with drifter data? J. Geophys. Res., 106, 19 56319 579, doi:10.1029/2000JC000587.

    • Search Google Scholar
    • Export Citation
  • Vernieres, G., , C. K. R. T. Jones, , and I. Kayo, 2011: Capturing eddy shedding in the Gulf of Mexico from Lagrangian observations. Physica D, 240, 166179, doi:10.1016/j.physd.2010.06.008.

    • Search Google Scholar
    • Export Citation
  • Yu, P., , A. L. Kurapov, , G. D. Egbert, , J. S. Allen, , and A. P. Korso, 2012: Variational assimilation of HF radar surface currents in a coastal ocean model off Oregon. Ocean Modell., 49–50, 86104, doi:10.1016/j.ocemod.2012.03.001.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 57 57 8
PDF Downloads 36 36 3

Do Assimilated Drifter Velocities Improve Lagrangian Predictability in an Operational Ocean Model?

View More View Less
  • 1 Naval Research Laboratory, Stennis Space Center, Mississippi
  • | 2 School of Marine Science and Policy, University of Delaware, Newark, Delaware
© Get Permissions
Restricted access

Abstract

The Lagrangian predictability of general circulation models is limited by the need for high-resolution data streams to constrain small-scale dynamical features. Here velocity observations from Lagrangian drifters deployed in the Gulf of Mexico during the summer 2012 Grand Lagrangian Deployment (GLAD) experiment are assimilated into the Naval Coastal Ocean Model (NCOM) 4D variational (4DVAR) analysis system to examine their impact on Lagrangian predictability. NCOM-4DVAR is a weak-constraint assimilation system using the indirect representer method. Velocities derived from drifter trajectories, as well as satellite and in situ observations, are assimilated. Lagrangian forecast skill is assessed using separation distance and angular differences between simulated and observed trajectory positions. Results show that assimilating drifter velocities substantially improves the model forecast shape and position of a Loop Current ring. These gains in mesoscale Eulerian forecast skill also improve Lagrangian forecasts, reducing the growth rate of separation distances between observed and simulated drifters by approximately 7.3 km day−1 on average, when compared with forecasts that assimilate only temperature and salinity observations. Trajectory angular differences are also reduced.

Corresponding author address: Philip Muscarella, Naval Research Lab, 1009 Balch Blvd., Stennis Space Center, MS 39522-5001. E-mail: philip.muscarella@nrlssc.navy.mil

Abstract

The Lagrangian predictability of general circulation models is limited by the need for high-resolution data streams to constrain small-scale dynamical features. Here velocity observations from Lagrangian drifters deployed in the Gulf of Mexico during the summer 2012 Grand Lagrangian Deployment (GLAD) experiment are assimilated into the Naval Coastal Ocean Model (NCOM) 4D variational (4DVAR) analysis system to examine their impact on Lagrangian predictability. NCOM-4DVAR is a weak-constraint assimilation system using the indirect representer method. Velocities derived from drifter trajectories, as well as satellite and in situ observations, are assimilated. Lagrangian forecast skill is assessed using separation distance and angular differences between simulated and observed trajectory positions. Results show that assimilating drifter velocities substantially improves the model forecast shape and position of a Loop Current ring. These gains in mesoscale Eulerian forecast skill also improve Lagrangian forecasts, reducing the growth rate of separation distances between observed and simulated drifters by approximately 7.3 km day−1 on average, when compared with forecasts that assimilate only temperature and salinity observations. Trajectory angular differences are also reduced.

Corresponding author address: Philip Muscarella, Naval Research Lab, 1009 Balch Blvd., Stennis Space Center, MS 39522-5001. E-mail: philip.muscarella@nrlssc.navy.mil
Save