• Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 10461053, doi:10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Byers, H., 1930: Summer sea fogs of the central California coast. Publ. Geogr., 3, 291338.

  • Draxler, R. R., , and G. D. Hess, 1998: An overview of the HYSPLIT_4 modeling system of trajectories, dispersion, and deposition. Aust. Meteor. Mag., 47, 295308.

    • Search Google Scholar
    • Export Citation
  • Edson, J., and et al. , 2007: The Coupled Boundary Layers and Air–Sea Transfer Experiment in low winds. Bull. Amer. Meteor. Soc., 88, 341356, doi:10.1175/BAMS-88-3-341.

    • Search Google Scholar
    • Export Citation
  • Emmons, G., , and R. Montgomery, 1947: Note on the physics of fog formation. J. Meteor., 4, 206, doi:10.1175/1520-0469(1947)004<0207:NOTPOF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Findlater, J., , W. T. Roach, , and B. C. Mchugh, 1989: The Haar of northeast Scotland. Quart. J. Roy. Meteor. Soc., 115, 581608, doi:10.1002/qj.49711548709.

    • Search Google Scholar
    • Export Citation
  • Foken, T., , M. Göckede, , M. Mauder, , L. Mahrt, , B. Amiro, , and W. Munger, 2004: Post-field data quality control. Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis, X. Lee et al., Eds., Kluwer Academic Publishers, 181–208.

  • Gultepe, I., and et al. , 2007: Fog research: A review of past achievements and future perspectives. Pure Appl. Geophys., 164, 11211159, doi:10.1007/s00024-007-0211-x.

    • Search Google Scholar
    • Export Citation
  • Heo, K. Y., , K. J. Ha, , L. Mahrt, , and J.-S. Shim, 2010: Comparison of advection and steam fogs: From direct observation over the sea. Atmos. Res., 98, 426437, doi:10.1016/j.atmosres.2010.08.004.

    • Search Google Scholar
    • Export Citation
  • Huang, H. J., 2013: Observational analysis of sea fog and its boundary layer structure on the coast of Southern China. Ph.D. dissertation, Nanjing University, 129 pp.

  • Huang, H. J., , H. N. Liu, , W. M. Jiang, , J. Huang, , and W. K. Mao, 2011: Characteristics of the boundary layer structure of sea fog on the coast of southern China. Adv. Atmos. Sci., 28, 13771389, doi:10.1007/s00376-011-0191-8.

    • Search Google Scholar
    • Export Citation
  • Huang, J., , and F. X. Zhou, 2006: The cooling and moistening effect on the formation of sea fog in the Huanghai Sea. Acta Oceanol. Sin., 25, 4962.

    • Search Google Scholar
    • Export Citation
  • Huang, J., , and P. Chan, 2011: Progress of marine meteorological observation experiment at Maoming of South China. J. Trop. Meteor., 17, 418429.

    • Search Google Scholar
    • Export Citation
  • Kim, C. K., , and S. S. Yum, 2012: Marine boundary layer structure for the sea fog formation off the west coast of the Korean Peninsula. Pure Appl. Geophys., 169, 11211135, doi:10.1007/s00024-011-0325-z.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., , and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606, doi:10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koračin, D., , J. M. Lewis, , W. T. Thompson, , C. E. Dorman, , and J. A. Businger, 2001: Transition of stratus into fog along the California coast: Observations and modeling. J. Atmos. Sci., 58, 17141731, doi:10.1175/1520-0469(2001)058<1714:TOSIFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koračin, D., , J. A. Businger, , C. E. Dorman, , and J. M. Lewis, 2005: Formation, evolution, and dissipation of coastal sea fog. Bound.-Layer Meteor., 117, 447478, doi:10.1007/s10546-005-2772-5.

    • Search Google Scholar
    • Export Citation
  • Koračin, D., , C. E. Dorman, , J. M. Lewis, , J. G. Hudson, , E. M. Wilcox, , and A. Torregrosa, 2014: Marine fog: A review. Atmos. Res., 143, 142175, doi:10.1016/j.atmosres.2013.12.012.

    • Search Google Scholar
    • Export Citation
  • Lamb, H., 1943: Haars or North Sea fogs on the coasts of Great Britain. Meteorology Office Publication, M.O. 50424, 34 pp.

  • Leipper, D. F., 1948: Fog development at San Diego, California. J. Mar. Res., 7, 337346.

  • Leipper, D. F., 1994: Fog on the United States West Coast: A review. Bull. Amer. Meteor. Soc., 75, 229240, doi:10.1175/1520-0477(1994)075<0229:FOTUWC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lewis, J. M., , D. Koračin, , and K. T. Redmond, 2004: Sea fog research in the United Kingdom and United States—A historical essay including outlook. Bull. Amer. Meteor. Soc., 85, 395408, doi:10.1175/BAMS-85-3-395.

    • Search Google Scholar
    • Export Citation
  • National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce, 2000: NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July 1999 (updated daily). Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. Accessed 12 March 2012. [Available online at http://dx.doi.org/10.5065/D6M043C6.]

  • Petterssen, S., 1938: On the causes and the forecasting of the California fog. Bull. Amer. Meteor. Soc., 19, 4955.

  • Petterssen, S., 1939: Some aspects of formation and dissipation of fog. Geofys. Publ., 12, 522.

  • Pilié, R. J., , E. J. Mack, , C. W. Rogers, , U. Katz, , and W. C. Kocmond, 1979: The formation of marine fog and the development of fog-stratus systems along the California coast. J. Appl. Meteor., 18, 12751286, doi:10.1175/1520-0450(1979)018<1275:TFOMFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., , M. D. King, , S. A. Ackerman, , W. P. Menzel, , B. A. Baum, , J. C. Riedi, , and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41, 459473, doi:10.1109/TGRS.2002.808301.

    • Search Google Scholar
    • Export Citation
  • Rogers, D. P., , and J. W. Telford, 1986: Metastable stratus tops. Quart. J. Roy. Meteor. Soc., 112, 481500, doi:10.1002/qj.49711247211.

    • Search Google Scholar
    • Export Citation
  • Siebert, H., , and U. Teichmann, 2000: Behaviour of an ultrasonic anemometer under cloudy conditions. Bound.-Layer Meteor., 94, 165169, doi:10.1023/A:1002446723575.

    • Search Google Scholar
    • Export Citation
  • Siegmund, P., 1993: Cloud diabatic forcing of the atmosphere, estimated from simultaneous ECMWF diabatic heating and ISCCP cloud amount observations. J. Climate, 6, 24192433, doi:10.1175/1520-0442(1993)006<2419:CDFOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tachibana, Y., , K. Iwamoto, , H. Ogawa, , M. Shiohara, , K. Takeuchi, , and M. Wakatsuchi, 2008: Observational study on atmospheric and oceanic boundary-layer structures accompanying the Okhotsk anticyclone under fog and non-fog conditions. J. Meteor. Soc. Japan, 86, 753771, doi:10.2151/jmsj.86.753.

    • Search Google Scholar
    • Export Citation
  • Tanimoto, Y., , S.-P. Xie, , K. Kai, , H. Okajima, , H. Tokinaga, , T. Murayama, , M. Nonaka, , and H. Nakamura, 2009: Observations of marine atmospheric boundary layer transitions across the summer Kuroshio Extension. J. Climate, 22, 13601374, doi:10.1175/2008JCLI2420.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1917: The formation of fog and mist. Quart. J. Roy. Meteor. Soc., 43, 241268, doi:10.1002/qj.49704318302.

  • Telford, J. W., , and S. K. Chai, 1993: Marine fog and its dissipation over warm water. J. Atmos. Sci., 50, 33363349, doi:10.1175/1520-0469(1993)050<3336:MFAIDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thiébaux, J., , E. Rogers, , W. Q. Wang, , and B. Katz, 2003: A new high-resolution blended real-time global sea surface temperature analysis. Bull. Amer. Meteor. Soc., 84, 645656, doi:10.1175/BAMS-84-5-645.

    • Search Google Scholar
    • Export Citation
  • Wang, B. H., 1985: Sea Fog. China Ocean Press, 330 pp.

  • Zhang, S. P., , M. Li, , X. G. Meng, , G. Fu, , Z. P. Ren, , and S. H. Gao, 2012: A comparison study between spring and summer fogs in the Yellow Sea—Observations and mechanisms. Pure Appl. Geophys., 169, 10011017, doi:10.1007/s00024-011-0358-3.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 410 410 82
PDF Downloads 123 123 17

Atmospheric Boundary Layer Structure and Turbulence during Sea Fog on the Southern China Coast

View More View Less
  • 1 Guangdong Provincial Key Laboratory of Regional Numerical Weather Prediction, and Joint Open Laboratory of Marine Meteorology, Institute of Tropical and Marine Meteorology, China Meteorological Administration, Guangzhou, China
  • | 2 School of Atmospheric Sciences, Nanjing University, Nanjing, China
  • | 3 Guangdong Provincial Key Laboratory of Regional Numerical Weather Prediction, and Joint Open Laboratory of Marine Meteorology, Institute of Tropical and Marine Meteorology, China Meteorological Administration, Guangzhou, China
© Get Permissions
Restricted access

Abstract

Small-scale turbulence has an essential role in sea-fog formation and evolution, but is not completely understood. This study analyzes measurements of the small-scale turbulence, together with the boundary layer structure and the synoptic and mesoscale conditions over the life cycle of a cold advection fog event and a warm advection fog event, both off the coast of southern China. The measurement data come from two sites: one on the coast and one at sea. These findings include the following: 1) For cold advection fog, the top can extend above the inversion base, but formation of an overlaying cloud causes the fog to dissipate. 2) For warm advection fog, two layers of low cloud can merge to form deep fog, with the depth exceeding 1000 m, when strong advection of warm moist air produces active thermal-turbulence mixing above the thermal-turbulence interface. 3) Turbulence near the sea surface is mainly thermally driven for cold advection fog, but mechanically driven for warm advection fog. 4) The momentum fluxes of both fog cases are below 0.04 kg m−1 s−2. However, the sensible and latent heat flux differ between the cases: in the cold advection fog case, the sensible and latent heat fluxes are roughly upward, averaging 2.58 and 26.75 W m−2, respectively; however, in the warm advection fog case, the sensible and latent heat flux are mostly downward, averaging −6.98 and −6.22 W m−2, respectively. 5) Low-level vertical advection is important for both fogs, but has a larger influence on fog development in the warm advection fog case.

Corresponding author address: Hongnian Liu, School of Atmospheric Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu, 210093, China. E-mail: liuhn@nju.edu.cn

Abstract

Small-scale turbulence has an essential role in sea-fog formation and evolution, but is not completely understood. This study analyzes measurements of the small-scale turbulence, together with the boundary layer structure and the synoptic and mesoscale conditions over the life cycle of a cold advection fog event and a warm advection fog event, both off the coast of southern China. The measurement data come from two sites: one on the coast and one at sea. These findings include the following: 1) For cold advection fog, the top can extend above the inversion base, but formation of an overlaying cloud causes the fog to dissipate. 2) For warm advection fog, two layers of low cloud can merge to form deep fog, with the depth exceeding 1000 m, when strong advection of warm moist air produces active thermal-turbulence mixing above the thermal-turbulence interface. 3) Turbulence near the sea surface is mainly thermally driven for cold advection fog, but mechanically driven for warm advection fog. 4) The momentum fluxes of both fog cases are below 0.04 kg m−1 s−2. However, the sensible and latent heat flux differ between the cases: in the cold advection fog case, the sensible and latent heat fluxes are roughly upward, averaging 2.58 and 26.75 W m−2, respectively; however, in the warm advection fog case, the sensible and latent heat flux are mostly downward, averaging −6.98 and −6.22 W m−2, respectively. 5) Low-level vertical advection is important for both fogs, but has a larger influence on fog development in the warm advection fog case.

Corresponding author address: Hongnian Liu, School of Atmospheric Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu, 210093, China. E-mail: liuhn@nju.edu.cn
Save