Toward Improved Forecasts of Sea-Breeze Horizontal Convective Rolls at Super High Resolutions. Part I: Configuration and Verification of a Down-Scaling Simulation System (DS3)

Guixing Chen Department of Geophysics, Graduate School of Science, Tohoku University, Sendai, Japan

Search for other papers by Guixing Chen in
Current site
Google Scholar
PubMed
Close
,
Xinyue Zhu Department of Geophysics, Graduate School of Science, Tohoku University, Sendai, Japan

Search for other papers by Xinyue Zhu in
Current site
Google Scholar
PubMed
Close
,
Weiming Sha Department of Geophysics, Graduate School of Science, Tohoku University, Sendai, Japan

Search for other papers by Weiming Sha in
Current site
Google Scholar
PubMed
Close
,
Toshiki Iwasaki Department of Geophysics, Graduate School of Science, Tohoku University, Sendai, Japan

Search for other papers by Toshiki Iwasaki in
Current site
Google Scholar
PubMed
Close
,
Hiromu Seko Meteorological Research Institute, Tsukuba, and Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

Search for other papers by Hiromu Seko in
Current site
Google Scholar
PubMed
Close
,
Kazuo Saito Meteorological Research Institute, Tsukuba, and Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

Search for other papers by Kazuo Saito in
Current site
Google Scholar
PubMed
Close
,
Hironori Iwai National Institute of Information and Communications Technology, Tokyo, Japan

Search for other papers by Hironori Iwai in
Current site
Google Scholar
PubMed
Close
, and
Shoken Ishii National Institute of Information and Communications Technology, Tokyo, Japan

Search for other papers by Shoken Ishii in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Horizontal convective rolls (HCRs) that develop in sea breezes greatly influence local weather in coastal areas. In this study, the authors present a realistic simulation of sea-breeze HCRs over an urban-scale area at a resolution of a few meters. An advanced Down-Scaling Simulation System (DS3) is built to derive the analyzed data using a nonhydrostatic model and data assimilation scheme that drive a building-resolving computational fluid dynamics (CFD) model. The mesoscale-analyzed data well capture the inland penetration of the sea breeze in northeastern Japan. The CFD model reproduces the HCRs over Sendai Airport in terms of their coastal initiation, inland growth, streamwise orientation, specific locations, roll wavelength, secondary flows, and regional differences due to complex surfaces. The simulated HCRs agree fairly well with those observed by dual-Doppler lidar and heliborne sensors. Both the simulation and observation analyses suggest that roll updrafts typically originate in the narrow bands of low-speed streaks and warm air near the ground. The HCRs are primarily driven and sustained by a combination of wind shear and buoyancy forces within the slightly unstable sea-breeze layer. In contrast, the experiment without data assimilation exhibits a higher deficiency in the reproduction of roll characteristics. The findings highlight that CFD modeling, given reliable mesoscale weather and surface conditions, aids in high-precision forecasting of HCRs at unprecedented high resolutions, which may help determine the roll structure, dynamics, and impacts on local weather.

Current affiliation: Department of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, China.

Corresponding author address: Dr. Guixing Chen, Department of Atmospheric Sciences, Sun Yat-sen University, 135 Xingangxi Road, Guangzhou 510275, China. E-mail: guixing_chen@yahoo.com

Abstract

Horizontal convective rolls (HCRs) that develop in sea breezes greatly influence local weather in coastal areas. In this study, the authors present a realistic simulation of sea-breeze HCRs over an urban-scale area at a resolution of a few meters. An advanced Down-Scaling Simulation System (DS3) is built to derive the analyzed data using a nonhydrostatic model and data assimilation scheme that drive a building-resolving computational fluid dynamics (CFD) model. The mesoscale-analyzed data well capture the inland penetration of the sea breeze in northeastern Japan. The CFD model reproduces the HCRs over Sendai Airport in terms of their coastal initiation, inland growth, streamwise orientation, specific locations, roll wavelength, secondary flows, and regional differences due to complex surfaces. The simulated HCRs agree fairly well with those observed by dual-Doppler lidar and heliborne sensors. Both the simulation and observation analyses suggest that roll updrafts typically originate in the narrow bands of low-speed streaks and warm air near the ground. The HCRs are primarily driven and sustained by a combination of wind shear and buoyancy forces within the slightly unstable sea-breeze layer. In contrast, the experiment without data assimilation exhibits a higher deficiency in the reproduction of roll characteristics. The findings highlight that CFD modeling, given reliable mesoscale weather and surface conditions, aids in high-precision forecasting of HCRs at unprecedented high resolutions, which may help determine the roll structure, dynamics, and impacts on local weather.

Current affiliation: Department of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, China.

Corresponding author address: Dr. Guixing Chen, Department of Atmospheric Sciences, Sun Yat-sen University, 135 Xingangxi Road, Guangzhou 510275, China. E-mail: guixing_chen@yahoo.com
Save
  • Asai, T., 1964: Cumulus convection in the atmosphere with vertical wind shear: Numerical experiment. J. Meteor. Soc. Japan, 42, 245259.

    • Search Google Scholar
    • Export Citation
  • Asai, T., 1970: Stability vertical of a plane shear parallel and flow with variable unstable stratification. J. Meteor. Soc. Japan, 48, 129139.

    • Search Google Scholar
    • Export Citation
  • Ashie, Y., and T. Kono, 2011: Urban-scale CFD analysis in support of a climate-sensitive design for the Tokyo Bay area. Int. J. Climatol., 31, 174188, doi:10.1002/joc.2226.

    • Search Google Scholar
    • Export Citation
  • Atkinson, B. W., and J. W. Zhang, 1996: Mesoscale shallow convection in the atmosphere. Rev. Geophys., 34, 403431, doi:10.1029/96RG02623.

    • Search Google Scholar
    • Export Citation
  • Baik, J.-J., S.-B. Park, and J.-J. Kim, 2009: Urban flow and dispersion simulation using a CFD model coupled to a mesoscale model. J. Appl. Meteor. Climatol., 48, 16671681, doi:10.1175/2009JAMC2066.1.

    • Search Google Scholar
    • Export Citation
  • Beare, R. J., 2014: A length scale defining partially-resolved boundary-layer turbulence simulations. Bound.-Layer Meteor., 151, 3955, doi:10.1007/s10546-013-9881-3.

    • Search Google Scholar
    • Export Citation
  • Castillo, M. C., A. Inagaki, and M. Kanda, 2011: The effects of inner- and outer-layer turbulence in a convective boundary layer on the near-neutral inertial sublayer over an urban-like surface. Bound.-Layer Meteor., 140, 453469, doi:10.1007/s10546-011-9614-4.

    • Search Google Scholar
    • Export Citation
  • Chen, G., X. Zhu, W. Sha, T. Iwasaki, H. Seko, K. Saito, H. Iwai, and S. Ishii, 2015: Toward improved forecasts of sea-breeze horizontal convective rolls at super high resolutions. Part II: The impacts of land use and buildings. Mon. Wea. Rev., 143, 18851906, doi:10.1175/MWR-D-14-00230.1.

    • Search Google Scholar
    • Export Citation
  • Ching, J., R. Rotunno, M. LeMone, A. Martilli, B. Kosovic, P. A. Jimenez, and J. Dudhia, 2014: Convectively induced secondary circulations in fine-grid mesoscale numerical weather prediction models. Mon. Wea. Rev., 142, 32843302, doi:10.1175/MWR-D-13-00318.1.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1972: Numerical investigation of neutral and unstable planetary boundary layers. J. Atmos. Sci., 29, 91115, doi:10.1175/1520-0469(1972)029<0091:NIONAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., G. E. Willis, and D. K. Lilly, 1969: Laboratory investigation of non-steady penetrative convection. J. Fluid Mech., 35, 731, doi:10.1017/S0022112069000942.

    • Search Google Scholar
    • Export Citation
  • Dorrestijn, J., D. T. Crommelin, A. P. Siebesma, and H. J. J. Jonker, 2013: Stochastic parameterization of shallow cumulus convection estimated from high-resolution model data. Theor. Comput. Fluid Dyn., 27, 133148, doi:10.1007/s00162-012-0281-y.

    • Search Google Scholar
    • Export Citation
  • Eito, H., M. Murakami, C. Muroi, T. Kato, S. Hayashi, H. Kuroiwa, and M. Yoshizaki, 2010: The structure and formation mechanism of transversal cloud bands associated with the Japan-Sea polar-airmass convergence zone. J. Meteor. Soc. Japan, 88, 625648, doi:10.2151/jmsj.2010-402.

    • Search Google Scholar
    • Export Citation
  • Etling, D., and R. A. Brown, 1993: Roll vortices in the planetary boundary layer: A review. Bound.-Layer Meteor., 65, 215248, doi:10.1007/BF00705527.

    • Search Google Scholar
    • Export Citation
  • Foster, R. C., F. Vianey, P. Drobinski, and P. Carlotti, 2006: Near-surface coherent structures and the vertical momentum flux in a large-eddy simulation of the neutrally-stratified boundary layer. Bound.-Layer Meteor., 120, 229255, doi:10.1007/s10546-006-9054-8.

    • Search Google Scholar
    • Export Citation
  • Gryschka, M., and S. Raasch, 2005: Roll convection during a cold air outbreak: A large eddy simulation with stationary model domain. Geophys. Res. Lett., 32, L14805, doi:10.1029/2005GL022872.

    • Search Google Scholar
    • Export Citation
  • Hayase, T., J. A. C. Humphrey, and R. Greif, 1992: A consistently formulated QUICK scheme for fast and stable convergence using finite volume iterative calculation procedures. J. Comput. Phys., 98, 108118, doi:10.1016/0021-9991(92)90177-Z.

    • Search Google Scholar
    • Export Citation
  • Inagaki, A., and M. Kanda, 2010: Organized structure of active turbulence over an array of cubes within the logarithmic layer of atmospheric flow. Bound.-Layer Meteor., 135, 209228, doi:10.1007/s10546-010-9477-0.

    • Search Google Scholar
    • Export Citation
  • Inagaki, A., M. C. L. Castillo, Y. Yamashita, M. Kanda, and H. Takimoto, 2012: Large-eddy simulation of coherent flow structures within a cubical canopy. Bound.-Layer Meteor., 142, 207222, doi:10.1007/s10546-011-9671-8.

    • Search Google Scholar
    • Export Citation
  • Ishii, S., and Coauthors, 2007: Temporal evolution and spatial structure of the local easterly wind “Kiyokawa-dashi” in Japan. Part I: Coherent Doppler lidar observations. J. Meteor. Soc. Japan, 85, 797813, doi:10.2151/jmsj.85.797.

    • Search Google Scholar
    • Export Citation
  • Iwai, H., and Coauthors, 2008: Dual-Doppler lidar observation of horizontal convective rolls and near-surface streaks. Geophys. Res. Lett., 35, L14808, doi:10.1029/2008GL034571.

    • Search Google Scholar
    • Export Citation
  • Kanda, M., R. Moriwaki, and F. Kasamatsu, 2004: Large eddy simulation of turbulent organized structure within and above explicitly resolved cubic arrays. Bound.-Layer Meteor., 112, 343368, doi:10.1023/B:BOUN.0000027909.40439.7c.

    • Search Google Scholar
    • Export Citation
  • Kang, S.-L., and G. H. Bryan, 2011: A large-eddy simulation study of moist convection initiation over heterogeneous surface fluxes. Mon. Wea. Rev., 139, 29012917, doi:10.1175/MWR-D-10-05037.1.

    • Search Google Scholar
    • Export Citation
  • Kelly, R. D., 1984: Horizontal roll and boundary-layer interrelationships observed over Lake Michigan. J. Atmos. Sci., 41, 18161826, doi:10.1175/1520-0469(1984)041<1816:HRABLI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khanna, S., and J. G. Brasseur, 1998: Three-dimensional buoyancy- and shear-induced local structure of the atmospheric boundary layer. J. Atmos. Sci., 55, 710743, doi:10.1175/1520-0469(1998)055<0710:TDBASI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Komatsubara, T., and N. Kaku, 2005: The status of wake vortex research in Japan. Proc. 13th Coherent Laser Radar Conf., Kamakura, Japan, National Institute of Information and Communications Technology, 140143.

  • Kristovich, D. A. R., 1993: Mean circulations of boundary-layer rolls in lake-effect snow storms. Bound.-Layer Meteor., 63, 293315, doi:10.1007/BF00710463.

    • Search Google Scholar
    • Export Citation
  • Kropfli, R. A., and N. M. Kohn, 1978: Persistent horizontal rolls in the urban mixed layer as revealed by dual-Doppler radar. J. Appl. Meteor., 17, 669676, doi:10.1175/1520-0450(1978)017<0669:PHRITU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kuettner, J. P., P. A. Hildebrand, and T. L. Clark, 1987: Convection waves: Observations of gravity wave systems over convectively active boundary layers. Quart. J. Roy. Meteor. Soc., 113, 445467, doi:10.1002/qj.49711347603.

    • Search Google Scholar
    • Export Citation
  • Kuo, H. L., 1963: Perturbations of plane couette flow in stratified fluid and origin of cloud streets. Phys. Fluids, 6, 195211, doi:10.1063/1.1706719.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., 1973: The structure and dynamics of horizontal roll vortices in the planetary boundary layer. J. Atmos. Sci., 30, 10771091, doi:10.1175/1520-0469(1973)030<1077:TSADOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., 1976: Modulation of turbulence energy by longitudinal rolls in an unstable planetary boundary layer. J. Atmos. Sci., 33, 13081320, doi:10.1175/1520-0469(1976)033<1308:MOTEBL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Leonard, B. P., 1979: A stable and accurate convection modeling procedure based on quadratic upstream interpolation. Comput. Methods Appl. Mech. Eng., 19, 5998, doi:10.1016/0045-7825(79)90034-3.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1962: On the numerical simulation of buoyant convection. Tellus, 14A, 148172, doi:10.1111/j.2153-3490.1962.tb00128.x.

  • Lin, C.-L., C.-H. Moeng, P. P. Sullivan, and J. C. McWilliams, 1997: The effect of surface roughness on flow structures in a neutrally stratified planetary boundary layer. Phys. Fluids, 9, 32353249, doi:10.1063/1.869439.

    • Search Google Scholar
    • Export Citation
  • Liu, A. Q., G. W. K. Moore, K. Tsuboki, and I. A. Renfrew, 2004: A high-resolution simulation of convective roll clouds during a cold-air outbreak. Geophys. Res. Lett., 31, L03101, doi:10.1029/2003GL018530.

    • Search Google Scholar
    • Export Citation
  • Liu, H., and J. Sang, 2011: Numerical simulation of roll vortices in the convective boundary layer. Adv. Atmos. Sci., 28, 477482, doi:10.1007/s00376-010-9229-6.

    • Search Google Scholar
    • Export Citation
  • Maronga, B., and S. Raasch, 2013: Large-eddy simulations of surface heterogeneity effects on the convective boundary layer during the LITFASS-2003 Experiment. Bound.-Layer Meteor., 146, 1744, doi:10.1007/s10546-012-9748-z.

    • Search Google Scholar
    • Export Citation
  • Matayoshi, N., H. Inokuchi, K. Yazawa, and Y. Okuno, 2005: Development of airborne ultrasonic velocimeter and its application to helicopters. AIAA Atmospheric Flight Mechanics Conf. and Exhibit, San Francisco, CA, AIAA, AIAA 2005-6118. [Available online at http://arc.aiaa.org/doi/abs/10.2514/6.2005-6118.]

  • Miao, S., and F. Chen, 2008: Formation of horizontal convective rolls in urban areas. Atmos. Res., 89, 298304, doi:10.1016/j.atmosres.2008.02.013.

    • Search Google Scholar
    • Export Citation
  • Miller, S. T. K., B. D. Keim, R. W. Talbot, and H. Mao, 2003: Sea breeze: Structure, forecasting, and impacts. Rev. Geophys., 41, 1011, doi:10.1029/2003RG000124.

    • Search Google Scholar
    • Export Citation
  • Mirocha, J., B. Kosović, and G. Kirkil, 2014: Resolved turbulence characteristics in large-eddy simulations nested within mesoscale simulations using the Weather Research and Forecasting Model. Mon. Wea. Rev., 142, 806831, doi:10.1175/MWR-D-13-00064.1.

    • Search Google Scholar
    • Export Citation
  • Miyoshi, T., and K. Aranami, 2006: Applying a four-dimensional Local Ensemble Transform Kalman Filter (4D-LETKF) to the JMA Nonhydrostatic Model (NHM). SOLA, 2, 128131, doi:10.2151/sola.2006-033.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., 1986: Large-eddy simulation of a stratus-topped boundary layer. Part I: Structure and budgets. J. Atmos. Sci., 43, 28862900, doi:10.1175/1520-0469(1986)043<2886:LESOAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., and P. P. Sullivan, 1994: A comparison of shear- and buoyancy-driven planetary boundary layer flows. J. Atmos. Sci., 51, 9991022, doi:10.1175/1520-0469(1994)051<0999:ACOSAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Muñoz-Esparza, D., B. Kosović, J. Mirocha, and J. van Beeck, 2014: Bridging the transition from mesoscale to microscale turbulence in numerical weather prediction models. Bound.-Layer Meteor., 153, 409440, doi:10.1007/s10546-014-9956-9.

    • Search Google Scholar
    • Export Citation
  • Newsom, R. K., R. Calhoun, D. Ligon, and J. Allwine, 2008: Linearly organized turbulence structures observed over a suburban area by dual-Doppler lidar. Bound.-Layer Meteor., 127, 111130, doi:10.1007/s10546-007-9243-0.

    • Search Google Scholar
    • Export Citation
  • Oda, R., and Coauthors, 2010: Doppler lidar observations of the coherent structures in the internal boundary layer. Ninth Symp. on the Urban Environment, Keystone, CO, Amer. Meteor. Soc., 10.1. [Available online at https://ams.confex.com/ams/19Ag19BLT9Urban/techprogram/paper_172111.htm.]

  • Oda, R., H. Iwai, A. Inagaki, S. Ishii, S. Satoh, S. Sekizawa, K. Mizutani, and Y. Murayama, 2012: Doppler lidar observation of turbulent mixing in the urban atmospheric boundary layer. Proc. Eighth Int. Conf. on Urban Climates, Dublin, Ireland, University College Dublin, 295.

  • Orlanski, I., 1976: A simple boundary condition for unbounded hyperbolic flows. J. Comput. Phys., 21, 251269, doi:10.1016/0021-9991(76)90023-1.

    • Search Google Scholar
    • Export Citation
  • Park, S.-B., and J.-J. Baik, 2013: A large-eddy simulation study of thermal effects on turbulence coherent structures in and above a building array. J. Appl. Meteor. Climatol., 52, 13481365, doi:10.1175/JAMC-D-12-0162.1.

    • Search Google Scholar
    • Export Citation
  • Patankar, S. V., 1980: Numerical Heat Transfer and Fluid Flow. Taylor & Francis Press, 214 pp.

  • Pennell, W. T., and M. A. LeMone, 1974: An experimental study of turbulence structure in the fair-weather trade wind boundary layer. J. Atmos. Sci., 31, 13081323, doi:10.1175/1520-0469(1974)031<1308:AESOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Prabha, T. V., A. Karipot, and M. W. Binford, 2007: Characteristics of secondary circulations over an inhomogeneous surface simulated with large-eddy simulation. Bound.-Layer Meteor., 123, 239261, doi:10.1007/s10546-006-9137-6.

    • Search Google Scholar
    • Export Citation
  • Raasch, S., and G. Harbusch, 2001: An analysis of secondary circulations and their effects caused by small-scale surface inhomogeneities using large-eddy simulation. Bound.-Layer Meteor., 101, 3159, doi:10.1023/A:1019297504109.

    • Search Google Scholar
    • Export Citation
  • Rao, P. A., H. E. Fuelberg, and K. K. Droegemeier, 1999: High-resolution modeling of the Cape Canaveral area land–water circulations and associated features. Mon. Wea. Rev., 127, 18081821, doi:10.1175/1520-0493(1999)127<1808:HRMOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saito, K., 2012: The JMA nonhydrostatic model and its applications to operation and research. Atmospheric Model Applications, I. Yucel, Ed., InTech, 85–110, doi:10.5772/35368.

  • Saito, K., and Coauthors, 2006: The operational JMA nonhydrostatic mesoscale model. Mon. Wea. Rev., 134, 12661298, doi:10.1175/MWR3120.1.

    • Search Google Scholar
    • Export Citation
  • Saito, K., J. Ishida, K. Aranami, T. Hara, T. Segawa, M. Narita, and Y. Honda, 2007: Nonhydrostatic atmospheric models and operational development at JMA. J. Meteor. Soc. Japan, 85B, 271304, doi:10.2151/jmsj.85B.271.

    • Search Google Scholar
    • Export Citation
  • Saito, K., and Coauthors, 2013: Super high-resolution mesoscale weather prediction. J. Phys. Conf. Ser., 454, 012073, doi:10.1088/1742-6596/454/1/012073.

    • Search Google Scholar
    • Export Citation
  • Seko, H., T. Miyoshi, Y. Shoji, and K. Saito, 2011: Data assimilation experiments of precipitable water vapor using the LETKF system: An intense rainfall event over Japan 28 July 2008. Tellus, 63A, 402412, doi:10.1111/j.1600-0870.2010.00508.x.

    • Search Google Scholar
    • Export Citation
  • Seko, H., T. Tsuyuki, K. Saito, and T. Miyoshi, 2013: Development of a two-way nested LETKF system for cloud resolving model. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications II, S. K. Park and L. Xu, Eds., Springer-Verlag, 197–218.

  • Sha, W., 2002: Design of the dynamics core for a new-generation numerical model of the local meteorology (in Japanese). Kaiyo Mon., 2, 107112.

    • Search Google Scholar
    • Export Citation
  • Sha, W., 2008: Local meteorological model based on LES over the Cartesian coordinate and complex surface (in Japanese). Meteorological Research Note, Y. Fujiyoshi, Ed., Vol. 219, Meteorological Society of Japan Press, 21–26.

  • Sha, W., T. Kawamura, and H. Ueda, 1991: A numerical study on sea/land breezes as a gravity current: Kelvin–Helmholtz billows and inland penetration of the sea-breeze front. J. Atmos. Sci., 48, 16491665, doi:10.1175/1520-0469(1991)048<1649:ANSOSB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shin, H. H., and S.-Y. Hong, 2013: Analysis of resolved and parameterized vertical transports in convective boundary layers at gray-zone resolutions. J. Atmos. Sci., 70, 32483261, doi:10.1175/JAS-D-12-0290.1.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. E., 1969: A comparison between laboratory currents and atmospheric density currents. Quart. J. Roy. Meteor. Soc., 95, 758765, doi:10.1002/qj.49709540609.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. Mon. Wea. Rev., 91, 99164, doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Weckwerth, T. M., J. W. Wilson, and R. M. Wakimoto, 1996: Thermodynamic variability within the convective boundary layer due to horizontal convective rolls. Mon. Wea. Rev., 124, 769784, doi:10.1175/1520-0493(1996)124<0769:TVWTCB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., J. W. Wilson, R. M. Wakimoto, and N. A. Crook, 1997: Horizontal convective rolls: Determining the environmental conditions supporting their existence and characteristics. Mon. Wea. Rev., 125, 505526, doi:10.1175/1520-0493(1997)125<0505:HCRDTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 2004: Towards numerical modeling in the “terra incognita.” J. Atmos. Sci., 61, 18161826, doi:10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., and C.-H. Moeng, 1992: Parameterizing turbulent diffusion through the joint probability density. Bound.-Layer Meteor., 60, 113, doi:10.1007/BF00122059.

    • Search Google Scholar
    • Export Citation
  • Young, G. S., D. A. R. Kristovich, M. R. Hjelmfelt, and R. C. Foster, 2002: Rolls, streets, waves, and more: A review of quasi-two-dimensional structures in the atmospheric boundary layer. Bull. Amer. Meteor. Soc., 83, 9971001, doi:10.1175/1520-0477(2002)083<0997:RSWAMA>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2074 1430 68
PDF Downloads 571 154 11