Systematic Comparison of Four-Dimensional Data Assimilation Methods With and Without the Tangent Linear Model Using Hybrid Background Error Covariance: E4DVar versus 4DEnVar

Jonathan Poterjoy Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Jonathan Poterjoy in
Current site
Google Scholar
PubMed
Close
and
Fuqing Zhang Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Fuqing Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Two ensemble formulations of the four-dimensional variational (4DVar) data assimilation technique are examined for a low-dimensional dynamical system. The first method, denoted E4DVar, uses tangent linear and adjoint model operators to minimize a cost function in the same manner as the traditional 4DVar data assimilation system. The second method, denoted 4DEnVar, uses an ensemble of nonlinear model trajectories to replace the function of linearized models in 4DVar, thus improving the parallelization of the data assimilation. Background errors for each algorithm are represented using a hybrid error covariance, which includes climatological errors as well as ensemble-estimated errors from an ensemble Kalman filter (EnKF). Numerical experiments performed over a range of scenarios suggest that both methods provide similar analysis accuracy for dense observation networks, and in perfect model experiments with large ensembles. Nevertheless, E4DVar has clear benefits over 4DEnVar when substantial covariance localization is required to treat sampling error. The greatest advantage of the tangent-linear approach is that it implicitly propagates a localized, full-rank ensemble covariance in time, thus avoiding the need to localize a time-dependent ensemble covariance. The tangent linear and adjoint model operators also provide a means of evolving flow-dependent information from the climate-based error component, which is found to be beneficial for treating model error. Challenges that need to be overcome before adopting a pure ensemble framework are illustrated through experiments estimating time covariances with four-dimensional ensembles and comparing results with those estimated with a tangent linear model.

Corresponding author address: Jonathan Poterjoy, Department of Meteorology, The Pennsylvania State University, 627 Walker Building, University Park, PA 16802. E-mail: jpoterjoy@psu.edu

Abstract

Two ensemble formulations of the four-dimensional variational (4DVar) data assimilation technique are examined for a low-dimensional dynamical system. The first method, denoted E4DVar, uses tangent linear and adjoint model operators to minimize a cost function in the same manner as the traditional 4DVar data assimilation system. The second method, denoted 4DEnVar, uses an ensemble of nonlinear model trajectories to replace the function of linearized models in 4DVar, thus improving the parallelization of the data assimilation. Background errors for each algorithm are represented using a hybrid error covariance, which includes climatological errors as well as ensemble-estimated errors from an ensemble Kalman filter (EnKF). Numerical experiments performed over a range of scenarios suggest that both methods provide similar analysis accuracy for dense observation networks, and in perfect model experiments with large ensembles. Nevertheless, E4DVar has clear benefits over 4DEnVar when substantial covariance localization is required to treat sampling error. The greatest advantage of the tangent-linear approach is that it implicitly propagates a localized, full-rank ensemble covariance in time, thus avoiding the need to localize a time-dependent ensemble covariance. The tangent linear and adjoint model operators also provide a means of evolving flow-dependent information from the climate-based error component, which is found to be beneficial for treating model error. Challenges that need to be overcome before adopting a pure ensemble framework are illustrated through experiments estimating time covariances with four-dimensional ensembles and comparing results with those estimated with a tangent linear model.

Corresponding author address: Jonathan Poterjoy, Department of Meteorology, The Pennsylvania State University, 627 Walker Building, University Park, PA 16802. E-mail: jpoterjoy@psu.edu
Save
  • Bishop, C. H., and D. Hodyss, 2011: Adaptive ensemble covariance localization in ensemble 4D-VAR state estimation. Mon. Wea. Rev., 139, 1241–1255, doi:10.1175/2010MWR3403.1.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., and E. A. Satterfield, 2013: Hidden error variance theory. Part I: Exposition and analytic model. Mon. Wea. Rev., 141, 1454–1468, doi:10.1175/MWR-D-12-00118.1.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., 2005: Ensemble-derived stationary and flow-dependent background-error covariances: Evaluation in a quasi-operational NWP setting. Quart. J. Roy. Meteor. Soc., 131, 1013–1043, doi:10.1256/qj.04.15.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., P. L. Houtekamer, C. Charette, H. Mitchell, and B. He, 2010a: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part I: Description and single-observation experiments. Mon. Wea. Rev., 138, 1550–1566, doi:10.1175/2009MWR3157.1.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., P. L. Houtekamer, C. Charette, H. Mitchell, and B. He, 2010b: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part II: One-month experiments with real observations. Mon. Wea. Rev., 138, 1567–1586, doi:10.1175/2009MWR3158.1.

    • Search Google Scholar
    • Export Citation
  • Clayton, A. M., A. C. Lorenc, and D. M. Barker, 2013: Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met Office. Quart. J. Roy. Meteor. Soc., 139, 1445–1461, doi:10.1002/qj.2054.

    • Search Google Scholar
    • Export Citation
  • Courtier, P., J.-N. Thepáut, and A. Hollingsworth, 1994: A strategy for operational implementation of 4D-Var, using an incremental approach. Quart. J. Roy. Meteor. Soc., 120, 1367–1387, doi:10.1002/qj.49712051912.

    • Search Google Scholar
    • Export Citation
  • Etherton, B. J., and C. H. Bishop, 2004: Resilience of hybrid ensemble/3DVAR analysis schemes to model error and ensemble covariance error. Mon. Wea. Rev., 132, 1065–1080, doi:10.1175/1520-0493(2004)132<1065:ROHDAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 143–10 162, doi:10.1029/94JC00572.

    • Search Google Scholar
    • Export Citation
  • Fairbairn, D., S. R. Pring, A. C. Lorenc, and I. Roulstone, 2014: A comparison of 4DVar with ensemble data assimilation methods. Quart. J. Roy. Meteor. Soc., 140, 281–294, doi:10.1002/qj.2135.

    • Search Google Scholar
    • Export Citation
  • Fisher, M., and E. Andersson, 2001: Developments in 4D-Var and Kalman filtering. ECMWF Tech. Memo. 347, ECMWF, 36 pp.

  • Gustafsson, N., and J. Bojarova, 2014: Four-dimensional ensemble variational (4D-En-Var) data assimilation for the HIgh Resolution Limited Area Model (HIRLAM). Nonlinear Processes Geophys., 21, 745–762, doi:10.5194/npg-21-745-2014.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and C. Snyder, 2000: A hybrid ensemble Kalman filter-3D variational analysis scheme. Mon. Wea. Rev., 128, 2905–2919, doi:10.1175/1520-0493(2000)128<2905:AHEKFV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Honda, Y., M. Nishijima, K. Koizumi, Y. Ohta, K. Tamiya, T. Kawabata, and T. Tsuyuki, 2005: A pre-operational variational data assimilation system for a non-hydrostatic model at the Japan Meteorological Agency: Formulation and preliminary results. Quart. J. Roy. Meteor. Soc., 131, 3465–3475, doi:10.1256/qj.05.132.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796–811, doi:10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huang, X., and Coauthors, 2009: Four-dimensional variational data assimilation for WRF: Formulation and preliminary results. Mon. Wea. Rev., 137, 299–314, doi:10.1175/2008MWR2577.1.

    • Search Google Scholar
    • Export Citation
  • Kuhl, D. D., T. E. Rosmond, C. H. Bishop, J. McLay, and N. L. Baker, 2013: Comparison of hybrid ensemble/4DVar and 4DVar within the NAVDAS-AR data assimilation framework. Mon. Wea. Rev., 141, 2740–2758, doi:10.1175/MWR-D-12-00182.1.

    • Search Google Scholar
    • Export Citation
  • Le Dimet, F.-X., and O. Talagrand, 1986: Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus, 38A, 97–110, doi:10.1111/j.1600-0870.1986.tb00459.x.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and Q. Xiao, 2013: An ensemble-based four-dimensional variational data assimilation scheme. Part III: Antarctic applications with Advanced Research WRF using real data. Mon. Wea. Rev., 141, 2721–2739, doi:10.1175/MWR-D-12-00130.1.

    • Search Google Scholar
    • Export Citation
  • Liu, C., Q. Xiao, and B. Wang, 2008: An ensemble-based four-dimensional variational data assimilation scheme. Part I: Technical formulation and preliminary test. Mon. Wea. Rev., 136, 3363–3373, doi:10.1175/2008MWR2312.1.

    • Search Google Scholar
    • Export Citation
  • Liu, C., Q. Xiao, and B. Wang, 2009: An ensemble-based four-dimensional variational data assimilation scheme. Part II: Observing System Simulation Experiments with Advanced Research WRF (ARW). Mon. Wea. Rev., 137, 1687–1704, doi:10.1175/2008MWR2699.1.

    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., 1997: Development of an operational variational assimilation scheme. J. Meteor. Soc. Japan, 75, 339–346.

  • Lorenc, A. C., 2003: The potential of the ensemble Kalman filter for NWP: A comparison with 4D-Var. Quart. J. Roy. Meteor. Soc., 129, 3183–3203, doi:10.1256/qj.02.132.

    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., and Coauthors, 2000: The Met Office global three-dimensional variational data assimilation scheme. Quart. J. Roy. Meteor. Soc., 126, 2991–3012, doi:10.1002/qj.49712657002.

    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., N. Bowler, A. Clayton, and S. Pring, 2014: Development of the Met Office’s 4DEnVar system. Proc. Sixth EnKF Workshop, Buffalo, NY, Met Office. [Available online at hfip.psu.edu/fuz4/EnKF2014/EnKF-Day1/Lorenc_4DEnVar.pptx.]

  • Lorenz, E. N., 1996: Predictability: A problem partly solved. Proc. Seminar on Predictability, Vol. 1, Reading, United Kingdom, ECMWF, 1–18.

  • Lorenz, E. N., and K. A. Emanuel, 1998: Optimal sites for supplementary weather observations: Simulation with a small model. J. Atmos. Sci., 55, 399–414, doi:10.1175/1520-0469(1998)055<0399:OSFSWO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Poterjoy, J., and F. Zhang, 2014: Intercomparison and coupling of ensemble and four-dimensional variational data assimilation methods for the analysis and forecasting of Hurricane Karl (2010). Mon. Wea. Rev., 142, 3347–3364, doi:10.1175/MWR-D-13-00394.1.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and N. A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54, 1642–1661, doi:10.1175/1520-0469(1997)054<1642:DAMRFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thepáut, J.-N., and P. Courtier, 1991: Four-dimensional variational data assimilation using the adjoint of a multilevel primitive-equation model. Quart. J. Roy. Meteor. Soc., 117, 1225–1254, doi:10.1002/qj.49711750206.

    • Search Google Scholar
    • Export Citation
  • Thepáut, J.-N., P. Courtier, G. Belaud, and G. Lamaître, 1996: Dynamical structure functions in a four-dimensional variational assimilation: A case study. Quart. J. Roy. Meteor. Soc., 122, 535–561, doi:10.1002/qj.49712253012.

    • Search Google Scholar
    • Export Citation
  • Tian, X., Z. Xie, and A. Dai, 2008: An ensemble-based explicit four-dimensional variational assimilation method. J. Geophys. Res.,113, D21124, doi:10.1029/2008JD010358.

  • Tian, X., Z. Xie, A. Dai, C. Shi, B. Jia, F. Chen, and K. Yang, 2009: A dual-pass variational data assimilation framework for estimating soil moisture profiles from AMSR-E microwave brightness temperature. J. Geophys. Res.,114, D16102, doi:10.1029/2008JD011600.

  • Wang, X., and T. Lei, 2014: GSI-based four-dimensional ensemble-variational (4DEnsVar) data assimilation: Formulation and single-resolution experiments with real data for NCEP Global Forecast System. Mon. Wea. Rev., 142, 3303–3325, doi:10.1175/MWR-D-13-00303.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X., C. Snyder, and T. M. Hamill, 2007: On the theoretical equivalence of differently proposed ensemble-3DVar hybrid analysis schemes. Mon. Wea. Rev., 135, 222–227, doi:10.1175/MWR3282.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., C. Snyder, and J. Sun, 2004: Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Wea. Rev., 132, 1238–1253, doi:10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., M. Zhang, and J. A. Hansen, 2009: Coupling ensemble Kalman filter with four-dimensional variational data assimilation. Adv. Atmos. Sci., 26, 1–8, doi:10.1007/s00376-009-0001-8.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., M. Zhang, and J. Poterjoy, 2013: E3DVar: Coupling an ensemble Kalman filter with three-dimensional variational data assimilation in a limited-area weather prediction model and comparison to E4DVar. Mon. Wea. Rev., 141, 900–917, doi:10.1175/MWR-D-12-00075.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, M., and F. Zhang, 2012: E4DVar: Coupling an ensemble Kalman filter with four-dimensional data assimilation in a limited-area weather prediction model. Mon. Wea. Rev., 140, 587–600, doi:10.1175/MWR-D-11-00023.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1559 1236 51
PDF Downloads 405 98 7