Toward Improved Forecasts of Sea-Breeze Horizontal Convective Rolls at Super High Resolutions. Part II: The Impacts of Land Use and Buildings

Guixing Chen Department of Geophysics, Graduate School of Science, Tohoku University, Sendai, Japan

Search for other papers by Guixing Chen in
Current site
Google Scholar
PubMed
Close
,
Xinyue Zhu Department of Geophysics, Graduate School of Science, Tohoku University, Sendai, Japan

Search for other papers by Xinyue Zhu in
Current site
Google Scholar
PubMed
Close
,
Weiming Sha Department of Geophysics, Graduate School of Science, Tohoku University, Sendai, Japan

Search for other papers by Weiming Sha in
Current site
Google Scholar
PubMed
Close
,
Toshiki Iwasaki Department of Geophysics, Graduate School of Science, Tohoku University, Sendai, Japan

Search for other papers by Toshiki Iwasaki in
Current site
Google Scholar
PubMed
Close
,
Hiromu Seko Meteorological Research Institute, Tsukuba, and Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

Search for other papers by Hiromu Seko in
Current site
Google Scholar
PubMed
Close
,
Kazuo Saito Meteorological Research Institute, Tsukuba, and Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

Search for other papers by Kazuo Saito in
Current site
Google Scholar
PubMed
Close
,
Hironori Iwai National Institute of Information and Communications Technology, Tokyo, Japan

Search for other papers by Hironori Iwai in
Current site
Google Scholar
PubMed
Close
, and
Shoken Ishii National Institute of Information and Communications Technology, Tokyo, Japan

Search for other papers by Shoken Ishii in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Horizontal convective rolls form in coastal areas around Sendai Airport during sea-breeze events. Using a building-resolving computational fluid dynamics model nested in an advanced forecast system with a data assimilation scheme, the authors perform a series of sensitivity experiments to investigate the impacts of land use and buildings on these rolls. The results show that the roll positions, intensities, and structures are significantly affected by variations in land use and the presence of buildings. Land-use heterogeneity is responsible for generating rolls with evident regional features. Major rolls tend to develop downwind of warm surfaces, and they dominate over neighboring rolls; thus, a heterogeneity-scale mode is imposed on the inherent roll wavelength. The roll’s rapid growth is attributable to warm surfaces that initiate a strong coupling among turbulent thermals, convective updrafts, pressure perturbations, and secondary flows in sea breezes. The heterogeneity-induced features differ considerably from the nearly homogeneous features that form over uniform surfaces. Additionally, the wake flow behind buildings helps organize near-surface warm air into streamwise bands that drive streaky ejections. The building-induced turbulence acts to modify secondary flows and displace roll updrafts toward building wakes. Such effects are most effective over villages with scattered houses that are aligned with the ambient wind. Building signatures are elongated in downwind open areas due to sustained secondary circulations. An analysis of turbulent kinetic energy shows that both land use and buildings regulate energy generation and transport, resulting in a clear response in roll growth. Thus, including complex surfaces in forecast models helps determine detailed characteristics and structures of roll convection over coastal regions.

Current affiliation: Department of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, China.

Corresponding author address: Dr. Guixing Chen, Department of Atmospheric Sciences, Sun Yat-sen University, 135 Xingangxi Road, Guangzhou 510275, China. E-mail: guixing_chen@yahoo.com

Abstract

Horizontal convective rolls form in coastal areas around Sendai Airport during sea-breeze events. Using a building-resolving computational fluid dynamics model nested in an advanced forecast system with a data assimilation scheme, the authors perform a series of sensitivity experiments to investigate the impacts of land use and buildings on these rolls. The results show that the roll positions, intensities, and structures are significantly affected by variations in land use and the presence of buildings. Land-use heterogeneity is responsible for generating rolls with evident regional features. Major rolls tend to develop downwind of warm surfaces, and they dominate over neighboring rolls; thus, a heterogeneity-scale mode is imposed on the inherent roll wavelength. The roll’s rapid growth is attributable to warm surfaces that initiate a strong coupling among turbulent thermals, convective updrafts, pressure perturbations, and secondary flows in sea breezes. The heterogeneity-induced features differ considerably from the nearly homogeneous features that form over uniform surfaces. Additionally, the wake flow behind buildings helps organize near-surface warm air into streamwise bands that drive streaky ejections. The building-induced turbulence acts to modify secondary flows and displace roll updrafts toward building wakes. Such effects are most effective over villages with scattered houses that are aligned with the ambient wind. Building signatures are elongated in downwind open areas due to sustained secondary circulations. An analysis of turbulent kinetic energy shows that both land use and buildings regulate energy generation and transport, resulting in a clear response in roll growth. Thus, including complex surfaces in forecast models helps determine detailed characteristics and structures of roll convection over coastal regions.

Current affiliation: Department of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, China.

Corresponding author address: Dr. Guixing Chen, Department of Atmospheric Sciences, Sun Yat-sen University, 135 Xingangxi Road, Guangzhou 510275, China. E-mail: guixing_chen@yahoo.com
Save
  • Asai, T., 1964: Cumulus convection in the atmosphere with vertical wind shear: Numerical experiment. J. Meteor. Soc. Japan, 42, 245259.

    • Search Google Scholar
    • Export Citation
  • Asai, T., 1970: Stability vertical of a plane shear parallel and flow with variable unstable stratification. J. Meteor. Soc. Japan, 48, 129139.

    • Search Google Scholar
    • Export Citation
  • Ashie, Y., and T. Kono, 2011: Urban-scale CFD analysis in support of a climate-sensitive design for the Tokyo Bay area. Int. J. Climatol., 31, 174188, doi:10.1002/joc.2226.

    • Search Google Scholar
    • Export Citation
  • Atkinson, B. W., and J. W. Zhang, 1996: Mesoscale shallow convection in the atmosphere. Rev. Geophys., 34, 403431, doi:10.1029/96RG02623.

    • Search Google Scholar
    • Export Citation
  • Avissar, R., and T. Schmidt, 1998: An evaluation of the scale at which ground-surface heat flux patchiness affects the convective boundary layer using large-eddy simulations. J. Atmos. Sci., 55, 26662689, doi:10.1175/1520-0469(1998)055<2666:AEOTSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baik, J.-J., S.-B. Park, and J.-J. Kim, 2009: Urban flow and dispersion simulation using a CFD model coupled to a mesoscale model. J. Appl. Meteor. Climatol., 48, 16671681, doi:10.1175/2009JAMC2066.1.

    • Search Google Scholar
    • Export Citation
  • Beare, R. J., 2014: A length scale defining partially-resolved boundary-layer turbulence simulations. Bound.-Layer Meteor., 151, 3955, doi:10.1007/s10546-013-9881-3.

    • Search Google Scholar
    • Export Citation
  • Castillo, M. C., A. Inagaki, and M. Kanda, 2011: The effects of inner- and outer-layer turbulence in a convective boundary layer on the near-neutral inertial sublayer over an urban-like surface. Bound.-Layer Meteor., 140, 453469, doi:10.1007/s10546-011-9614-4.

    • Search Google Scholar
    • Export Citation
  • Chen, G., X. Zhu, W. Sha, T. Iwasaki, H. Seko, K. Saito, H. Iwai, and S. Ishii, 2015: Toward improved forecasts of sea-breeze horizontal convective rolls at super high resolutions. Part I: Configuration and verification of a Down-Scaling Simulation System (DS3). Mon. Wea. Rev., 143, 18611884, doi:10.1175/MWR-D-14-00212.1.

    • Search Google Scholar
    • Export Citation
  • Ching, J., R. Rotunno, M. LeMone, A. Martilli, B. Kosovic, P. A. Jimenez, and J. Dudhia, 2014: Convectively induced secondary circulations in fine-grid mesoscale numerical weather prediction models. Mon. Wea. Rev., 142, 32843302, doi:10.1175/MWR-D-13-00318.1.

    • Search Google Scholar
    • Export Citation
  • Collier, C. G., 2006: The impact of urban areas on weather. Quart. J. Roy. Meteor. Soc., 132, 125, doi:10.1256/qj.05.199.

  • Courault, D., P. Drobinski, Y. Brunet, P. Lacarrere, and C. Talbot, 2007: Impact of surface heterogeneity on a buoyancy-driven convective boundary layer in light winds. Bound.-Layer Meteor., 124, 383403, doi:10.1007/s10546-007-9172-y.

    • Search Google Scholar
    • Export Citation
  • Dorrestijn, J., D. T. Crommelin, A. P. Siebesma, and H. J. J. Jonker, 2013: Stochastic parameterization of shallow cumulus convection estimated from high-resolution model data. Theor. Comput. Fluid Dyn., 27, 133148, doi:10.1007/s00162-012-0281-y.

    • Search Google Scholar
    • Export Citation
  • Foster, R. C., F. Vianey, P. Drobinski, and P. Carlotti, 2006: Near-surface coherent structures and the vertical momentum flux in a large-eddy simulation of the neutrally-stratified boundary layer. Bound.-Layer Meteor., 120, 229255, doi:10.1007/s10546-006-9054-8.

    • Search Google Scholar
    • Export Citation
  • Hadfield, M. G., W. R. Cotton, and R. A. Pielke, 1992: Large-eddy simulations of thermally forced circulations in the convective boundary layer. Part II: The effect of change in wavelength and wind speed. Bound.-Layer Meteor., 58, 307327, doi:10.1007/BF00120235.

    • Search Google Scholar
    • Export Citation
  • Huang, H.-Y., and S. A. Margulis, 2009: On the impact of surface heterogeneity on a realistic convective boundary layer. Water Resour. Res., 45, W04425, doi:10.1029/2008WR007175.

    • Search Google Scholar
    • Export Citation
  • Inagaki, A., and M. Kanda, 2010: Organized structure of active turbulence over an array of cubes within the logarithmic layer of atmospheric flow. Bound.-Layer Meteor., 135, 209228, doi:10.1007/s10546-010-9477-0.

    • Search Google Scholar
    • Export Citation
  • Inagaki, A., M. C. L. Castillo, Y. Yamashita, M. Kanda, and H. Takimoto, 2012: Large-eddy simulation of coherent flow structures within a cubical canopy. Bound.-Layer Meteor., 142, 207222, doi:10.1007/s10546-011-9671-8.

    • Search Google Scholar
    • Export Citation
  • Iwai, H., and Coauthors, 2008: Dual-Doppler lidar observation of horizontal convective rolls and near-surface streaks. Geophys. Res. Lett., 35, L14808, doi:10.1029/2008GL034571.

    • Search Google Scholar
    • Export Citation
  • Kanda, M., 2006: Large eddy simulations on the effects of surface geometry of building arrays on turbulent organized structures. Bound.-Layer Meteor., 118, 151168, doi:10.1007/s10546-005-5294-2.

    • Search Google Scholar
    • Export Citation
  • Kanda, M., R. Moriwaki, and F. Kasamatsu, 2004: Large eddy simulation of turbulent organized structure within and above explicitly resolved cubic arrays. Bound.-Layer Meteor., 112, 343368, doi:10.1023/B:BOUN.0000027909.40439.7c.

    • Search Google Scholar
    • Export Citation
  • Kang, S.-L., and G. H. Bryan, 2011: A large-eddy simulation study of moist convection initiation over heterogeneous surface fluxes. Mon. Wea. Rev., 139, 29012917, doi:10.1175/MWR-D-10-05037.1.

    • Search Google Scholar
    • Export Citation
  • Khanna, S., and J. G. Brasseur, 1998: Three-dimensional buoyancy- and shear-induced local structure of the atmospheric boundary layer. J. Atmos. Sci., 55, 710743, doi:10.1175/1520-0469(1998)055<0710:TDBASI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kropfli, R. A., and N. M. Kohn, 1978: Persistent horizontal rolls in the urban mixed layer as revealed by dual-Doppler radar. J. Appl. Meteor., 17, 669676, doi:10.1175/1520-0450(1978)017<0669:PHRITU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., 1973: The structure and dynamics of horizontal roll vortices in the planetary boundary layer. J. Atmos. Sci., 30, 10771091, doi:10.1175/1520-0469(1973)030<1077:TSADOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., 1976: Modulation of turbulence energy by longitudinal rolls in an unstable planetary boundary layer. J. Atmos. Sci., 33, 13081320, doi:10.1175/1520-0469(1976)033<1308:MOTEBL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., J. C. Wyngaard, and W. T. Pennell, 1980: Mean-field and second-moment budgets in a baroclinic, convective boundary layer. J. Atmos. Sci., 37, 13131326, doi:10.1175/1520-0469(1980)037<1313:MFASMB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Letzel, M. O., and S. Raasch, 2003: Large eddy simulation of thermally induced oscillations in the convective boundary layer. J. Atmos. Sci., 60, 23282341, doi:10.1175/1520-0469(2003)060<2328:LESOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, C.-L., 2000: Local pressure-transport structure in a convective atmospheric boundary layer. Phys. Fluids, 12, 11121128, doi:10.1063/1.870365.

    • Search Google Scholar
    • Export Citation
  • Maronga, B., and S. Raasch, 2013: Large-eddy simulations of surface heterogeneity effects on the convective boundary layer during the LITFASS-2003 Experiment. Bound.-Layer Meteor., 146, 1744, doi:10.1007/s10546-012-9748-z.

    • Search Google Scholar
    • Export Citation
  • Miao, S., and F. Chen, 2008: Formation of horizontal convective rolls in urban areas. Atmos. Res., 89, 298304, doi:10.1016/j.atmosres.2008.02.013.

    • Search Google Scholar
    • Export Citation
  • Mirocha, J., B. Kosović, and G. Kirkil, 2014: Resolved turbulence characteristics in large-eddy simulations nested within mesoscale simulations using the Weather Research and Forecasting Model. Mon. Wea. Rev., 142, 806831, doi:10.1175/MWR-D-13-00064.1.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., and P. P. Sullivan, 1994: A comparison of shear- and buoyancy-driven planetary boundary layer flows. J. Atmos. Sci., 51, 9991022, doi:10.1175/1520-0469(1994)051<0999:ACOSAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Muñoz-Esparza, D., B. Kosović, J. Mirocha, and J. van Beeck, 2014a: Nesting turbulence in an offshore convective boundary layer using large-eddy simulations. Bound.-Layer Meteor., 151, 453478, doi:10.1007/s10546-014-9911-9.

    • Search Google Scholar
    • Export Citation
  • Muñoz-Esparza, D., B. Kosović, J. Mirocha, and J. van Beeck, 2014b: Bridging the transition from mesoscale to microscale turbulence in numerical weather prediction models. Bound.-Layer Meteor., 153, 409440, doi:10.1007/s10546-014-9956-9.

    • Search Google Scholar
    • Export Citation
  • Newsom, R. K., R. Calhoun, D. Ligon, and J. Allwine, 2008: Linearly organized turbulence structures observed over a suburban area by dual-Doppler lidar. Bound.-Layer Meteor., 127, 111130, doi:10.1007/s10546-007-9243-0.

    • Search Google Scholar
    • Export Citation
  • Oda, R., and Coauthors, 2010: Doppler lidar observations of the coherent structures in the internal boundary layer. Ninth Symp. on the Urban Environment, Keystone, CO, Amer. Meteor. Soc., 10.1. [Available online at https://ams.confex.com/ams/19Ag19BLT9Urban/techprogram/paper_172111.htm.]

  • Park, S.-B., and J.-J. Baik, 2013: A large-eddy simulation study of thermal effects on turbulence coherent structures in and above a building array. J. Appl. Meteor. Climatol., 52, 13481365, doi:10.1175/JAMC-D-12-0162.1.

    • Search Google Scholar
    • Export Citation
  • Park, S.-B., and J.-J. Baik, 2014: Large-eddy simulations of convective boundary layers over flat and urbanlike surfaces. J. Atmos. Sci., 71, 18801892, doi:10.1175/JAS-D-13-0191.1.

    • Search Google Scholar
    • Export Citation
  • Prabha, T. V., A. Karipot, and M. W. Binford, 2007: Characteristics of secondary circulations over an inhomogeneous surface simulated with large-eddy simulation. Bound.-Layer Meteor., 123, 239261, doi:10.1007/s10546-006-9137-6.

    • Search Google Scholar
    • Export Citation
  • Raasch, S., and G. Harbusch, 2001: An analysis of secondary circulations and their effects caused by small-scale surface inhomogeneities using large-eddy simulation. Bound.-Layer Meteor., 101, 3159, doi:10.1023/A:1019297504109.

    • Search Google Scholar
    • Export Citation
  • Roth, M., 2000: Review of atmospheric turbulence over cities. Quart. J. Roy. Meteor. Soc., 126, 941990, doi:10.1002/qj.49712656409.

  • Saito, K., and Coauthors, 2006: The operational JMA nonhydrostatic mesoscale model. Mon. Wea. Rev., 134, 12661298, doi:10.1175/MWR3120.1.

    • Search Google Scholar
    • Export Citation
  • Saito, K., J. Ishida, K. Aranami, T. Hara, T. Segawa, M. Narita, and Y. Honda, 2007: Nonhydrostatic atmospheric models and operational development at JMA. J. Meteor. Soc. Japan, 85B, 271304, doi:10.2151/jmsj.85B.271.

    • Search Google Scholar
    • Export Citation
  • Seko, H., T. Miyoshi, Y. Shoji, and K. Saito, 2011: Data assimilation experiments of precipitable water vapor using the LETKF system: An intense rainfall event over Japan 28 July 2008. Tellus, 63A, 402412, doi:10.1111/j.1600-0870.2010.00508.x.

    • Search Google Scholar
    • Export Citation
  • Seko, H., T. Tsuyuki, K. Saito, and T. Miyoshi, 2013: Development of a two-way nested LETKF system for cloud resolving model. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications II, S. K. Park and L. Xu, Eds., Springer-Verlag, 197–218.

  • Sha, W., 2002: Design of the dynamics core for a new-generation numerical model of the local meteorology (in Japanese). Kaiyo Mon., 2, 107112.

    • Search Google Scholar
    • Export Citation
  • Sha, W., 2008: Local meteorological model based on LES over the Cartesian coordinate and complex surface (in Japanese). Meteorological Research Note, Y. Fujiyoshi, Ed., Vol. 219, Meteorological Society of Japan Press, 21–26.

  • Sha, W., T. Kawamura, and H. Ueda, 1991: A numerical study on sea/land breezes as a gravity current: Kelvin–Helmholtz billows and inland penetration of the sea-breeze front. J. Atmos. Sci., 48, 16491665, doi:10.1175/1520-0469(1991)048<1649:ANSOSB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shen, S., and M. Y. Leclerc, 1995: How large must surface inhomogeneities be before they influence the convective boundary layer structure? A case study. Quart. J. Roy. Meteor. Soc., 121, 12091228, doi:10.1002/qj.49712152603.

    • Search Google Scholar
    • Export Citation
  • Shin, H. H., and S.-Y. Hong, 2013: Analysis of resolved and parameterized vertical transports in convective boundary layers at gray-zone resolutions. J. Atmos. Sci., 70, 32483261, doi:10.1175/JAS-D-12-0290.1.

    • Search Google Scholar
    • Export Citation
  • Smith, W. S., J. M. Reisner, and C.-Y. J. Kao, 2001: Simulations of flow around a cubical building: Comparison with towing-tank data and assessment of radiatively induced thermal effects. Atmos. Environ., 35, 38113821, doi:10.1016/S1352-2310(01)00177-7.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., J. W. Wilson, R. M. Wakimoto, and N. A. Crook, 1997: Horizontal convective rolls: Determining the environmental conditions supporting their existence and characteristics. Mon. Wea. Rev., 125, 505526, doi:10.1175/1520-0493(1997)125<0505:HCRDTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Young, G. S., D. A. R. Kristovich, M. R. Hjelmfelt, and R. C. Foster, 2002: Rolls, streets, waves, and more: A review of quasi-two-dimensional structures in the atmospheric boundary layer. Bull. Amer. Meteor. Soc., 83, 9971001, doi:10.1175/1520-0477(2002)083<0997:RSWAMA>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2223 1875 53
PDF Downloads 338 83 8