• Bernhardt, D., 2006: Glacier National Park flooding November 2006. NWS Western Region Tech. Attachment 08-23, 15 pp. [Available online at http://www.wrh.noaa.gov/media/wrh/online_publications/talite/talite0823.pdf.]

  • Berrisford, P., , D. Dee, , K. Fielding, , M. Fuentes, , P. Kallberg, , S. Kobayashi, , and S. Uppala, 2009: The ERA-Interim archive. ECMWF Tech. Rep. 1, 16 pp. [Available online at http://old.ecmwf.int/publications/library/do/references/show?id=89203.]

  • Cordeira, J. M., , F. M. Ralph, , and B. J. Moore, 2013: The development and evolution of two atmospheric river events in proximity to western North Pacific tropical cyclones in October 2010. Mon. Wea. Rev., 141, 42344255, doi:10.1175/MWR-D-13-00019.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim Reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., , F. M. Ralph, , T. Das, , P. J. Neiman, , and D. R. Cayan, 2011: Atmospheric rivers, floods, and the water resources of California. Water, 3,445478, doi:10.3390/w3020445.

    • Search Google Scholar
    • Export Citation
  • Didlake, A. C., Jr., 2007: An analysis of water vapor flux and orographic precipitation in northern California. B.S. thesis, Dept. of Geology and Geophysics, Yale University, 47 pp.

  • Hughes, M., , K. M. Mahoney, , P. J. Neiman, , B. J. Moore, , M. Alexander, , and F. M. Ralph, 2014: The landfall and inland penetration of a flood-producing atmospheric river in Arizona. Part II: Sensitivity of modeled precipitation to terrain height and atmospheric river orientation. J. Hydrometeor., 15, 19541974, doi:10.1175/JHM-D-13-0176.1.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., 1989: Description of the NMC Global Data Assimilation and Forecast System. Wea. Forecasting, 4, 335342, doi:10.1175/1520-0434(1989)004<0335:DOTNGD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knippertz, P., , and J. E. Martin, 2007: A Pacific moisture conveyor belt and its relationship to a significant precipitation event in the semiarid southwestern United States. Wea. Forecasting, 22, 125144, doi:10.1175/WAF963.1.

    • Search Google Scholar
    • Export Citation
  • Knippertz, P., , and H. Wernli, 2010: A Lagrangian climatology of tropical moisture exports to the Northern Hemispheric extratropics. J. Climate, 23, 9871003, doi:10.1175/2009JCLI3333.1.

    • Search Google Scholar
    • Export Citation
  • Knippertz, P., , H. Wernli, , and G. Gläser, 2013: A global climatology of tropical moisture exports. J. Climate, 26, 30313045, doi:10.1175/JCLI-D-12-00401.1.

    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., , J. R. Gyakum, , and R. Benoit, 1998: Moisture transport diagnosis of a wintertime precipitation event in the Mackenzie River basin. Mon. Wea. Rev., 126, 668692, doi:10.1175/1520-0493(1998)126<0668:MTDOAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., , R. P. Allan, , E. F. Wood, , G. Villarini, , D. J. Brayshaw, , and A. J. Wade, 2011: Winter floods in Britain are connected to atmospheric rivers. Geophys. Res. Lett., 38, L23803, doi:10.1029/2011GL049783.

    • Search Google Scholar
    • Export Citation
  • Moore, B. J., , P. J. Neiman, , F. M. Ralph, , and F. Barthold, 2012: Physical processes associated with heavy flooding rainfall in Nashville, Tennessee, and vicinity during 1–2 May 2010: The role of an atmospheric river and mesoscale convective systems. Mon. Wea. Rev., 140, 358378, doi:10.1175/MWR-D-11-00126.1.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., , F. M. Ralph, , A. B. White, , D. E. Kingsmill, , and P. O. G. Persson, 2002: The statistical relationship between upslope flow and rainfall in California’s Coastal Mountains: Observations during CALJET. Mon. Wea. Rev., 130, 14681492, doi:10.1175/1520-0493(2002)130<1468:TSRBUF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., , F. M. Ralph, , G. A. Wick, , Y.-H. Kuo, , T.-K. Wee, , Z. Ma, , G. H. Taylor, , and M. D. Dettinger, 2008: Diagnosis of an intense atmospheric river impacting the Pacific Northwest: Storm summary and offshore vertical structure observed with COSMIC satellite retrievals. Mon. Wea. Rev., 136, 43984420, doi:10.1175/2008MWR2550.1.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., , L. J. Schick, , F. M. Ralph, , M. Hughes, , and G. A. Wick, 2011: Flooding in western Washington: The connection to atmospheric rivers. J. Hydrometeor., 12, 13371358, doi:10.1175/2011JHM1358.1.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., , F. M. Ralph, , B. J. Moore, , M. Hughes, , K. M. Mahoney, , J. M. Cordeira, , and M. D. Dettinger, 2013: The landfall and inland penetration of a flood-producing atmospheric river in Arizona. Part I: Observed synoptic-scale, orographic, and hydrometeorological characteristics. J. Hydrometeor., 14, 460464, doi:10.1175/JHM-D-12-0101.1.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., , F. M. Ralph, , B. J. Moore, , and R. J. Zamora, 2014: The regional influence of an intense Sierra barrier jet and landfalling atmospheric river on orographic precipitation in northern California: A case study. J. Hydrometeor., 15, 14191439, doi:10.1175/JHM-D-13-0183.1.

    • Search Google Scholar
    • Export Citation
  • Newell, R. E., , and Y. Zhu, 1994: Tropospheric rivers: A one-year record and a possible application to ice core data. Geophys. Res. Lett., 21, 113116, doi:10.1029/93GL03113.

    • Search Google Scholar
    • Export Citation
  • Newell, R. E., , N. E. Newell, , Y. Zhu, , and C. Scott, 1992: Tropospheric rivers?—A pilot study. Geophys. Res. Lett., 19, 24012404, doi:10.1029/92GL02916.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., , P. J. Neiman, , and G. A. Wick, 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 17211745, doi:10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., , P. J. Neiman, , and R. Rotunno, 2005: Dropsonde observations in low-level jets over the northeastern Pacific Ocean from CALJET-1998 and PACJET-2001: Mean vertical-profile and atmospheric-river characteristics. Mon. Wea. Rev., 133, 889910, doi:10.1175/MWR2896.1.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., , P. J. Neiman, , G. A. Wick, , S. I. Gutman, , M. D. Dettinger, , D. R. Cayan, , and A. B. White, 2006: Flooding on California’s Russian River: Role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, doi:10.1029/2006GL026689.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., , P. J. Neiman, , G. N. Kiladis, , K. Weickmann, , and D. W. Reynolds, 2011: A multiscale observational case study of a Pacific atmospheric river exhibiting tropical–extratropical connections and a mesoscale frontal wave. Mon. Wea. Rev., 139, 11691189, doi:10.1175/2010MWR3596.1.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., , T. Coleman, , P. J. Neiman, , R. J. Zamora, , and M. D. Dettinger, 2013: Observed impacts of duration and seasonality of atmospheric-river landfalls on soil moisture and runoff in coastal northern California. J. Hydrometeor., 14, 443459, doi:10.1175/JHM-D-12-076.1.

    • Search Google Scholar
    • Export Citation
  • Rigby, J. G., 1998: The 1997 New Year’s floods in western Nevada. Special Publ. 23, Nevada Bureau of Mines and Geology, University of Nevada, Reno, NV, 111 pp.

  • Rivera, E. R., , F. Dominguez, , and C. L. Castro, 2014: Atmospheric rivers and cool season extreme precipitation events in the Verde River basin of Arizona. J. Hydrometeor., 15, 813829, doi:10.1175/JHM-D-12-0189.1.

    • Search Google Scholar
    • Export Citation
  • Rutz, J. J., , and W. J. Steenburgh, 2012: Quantifying the role of atmospheric rivers in the interior western United States. Atmos. Sci. Lett., 13, 257251, doi:10.1002/asl.392.

    • Search Google Scholar
    • Export Citation
  • Rutz, J. J., , W. J. Steenburgh, , and F. M. Ralph, 2014: Climatological characteristics of atmospheric rivers and their inland penetration over the western United States. Mon. Wea. Rev., 142, 905921, doi:10.1175/MWR-D-13-00168.1.

    • Search Google Scholar
    • Export Citation
  • Simmons, A., , S. Uppala, , D. Dee, , and S. Kobayashi, 2007: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 2535.

  • Smith, R. B., , I. Barstad, , and L. Bonneau, 2005: Orographic precipitation and Oregon’s climate transition. J. Atmos. Sci., 62, 177191, doi:10.1175/JAS-3376.1.

    • Search Google Scholar
    • Export Citation
  • Sodemann, H., , and A. Stohl, 2013: Moisture origin and meridional transport in atmospheric rivers and their association with multiple cyclones. Mon. Wea. Rev., 141, 28502868, doi:10.1175/MWR-D-12-00256.1.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., , C. Forster, , and H. Sodemann, 2008: Remote sources of water vapor forming precipitation on the Norwegian west coast at 60°N—A tale of hurricanes and an atmospheric river. J. Geophys. Res., 113, D05102, doi:10.1029/2007JD009006.

    • Search Google Scholar
    • Export Citation
  • Uppala, S., , D. Dee, , S. Kobayashi, , P. Berrisford, , and A. Simmons, 2008: Towards a climate data assimilation system: Status update of ERA-Interim. ECMWF Newsletter, No. 115, ECMWF, Reading, United Kingdom, 1218.

  • Wernli, H., 1997: A Lagrangian-based analysis of extratropical cyclones. II: A detailed case-study. Quart. J. Roy. Meteor. Soc., 123, 16771706, doi:10.1002/qj.49712354211.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., , and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735, doi:10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 166 166 24
PDF Downloads 107 107 14

The Inland Penetration of Atmospheric Rivers over Western North America: A Lagrangian Analysis

View More View Less
  • 1 National Weather Service, Western Region Headquarters, Salt Lake City, Utah
  • | 2 University of Utah, Salt Lake City, Utah
  • | 3 Scripps Institute of Oceanography, La Jolla, California
© Get Permissions
Restricted access

Abstract

Although atmospheric rivers (ARs) typically weaken following landfall, those that penetrate inland can contribute to heavy precipitation and high-impact weather within the interior of western North America. In this paper, the authors examine the evolution of ARs over western North America using trajectories released at 950 and 700 hPa within cool-season ARs along the Pacific coast. These trajectories are classified as coastal decaying, inland penetrating, or interior penetrating based on whether they remain within an AR upon reaching selected transects over western North America. Interior-penetrating AR trajectories most frequently make landfall along the Oregon coast, but the greatest fraction of landfalling AR trajectories that eventually penetrate into the interior within an AR is found along the Baja Peninsula. In contrast, interior-penetrating AR trajectories rarely traverse the southern “high” Sierra. At landfall, interior-penetrating AR trajectories are associated with a more amplified flow pattern, more southwesterly (vs westerly) flow along the Pacific coast, and larger water vapor transport (). The larger initial of interior-penetrating AR trajectories is due primarily to larger initial water vapor q and wind speed υ for those initiated at 950 and 700 hPa, respectively.

Inland- and interior-penetrating AR trajectories maintain large over the interior partially due to increases in υ that offset decreases in q, particularly in the vicinity of topographical barriers. Therefore, synoptic conditions and trajectory pathways favoring larger initial at the coast, limited water vapor depletion by orographic precipitation, and increases in υ over the interior are keys to differentiating interior-penetrating from coastal-decaying ARs.

Corresponding author address: Jonathan J. Rutz, National Weather Service, Western Region Headquarters, Room 1235, 125 South State St., Salt Lake City, UT 84138. E-mail: jonathan.rutz@noaa.gov

Abstract

Although atmospheric rivers (ARs) typically weaken following landfall, those that penetrate inland can contribute to heavy precipitation and high-impact weather within the interior of western North America. In this paper, the authors examine the evolution of ARs over western North America using trajectories released at 950 and 700 hPa within cool-season ARs along the Pacific coast. These trajectories are classified as coastal decaying, inland penetrating, or interior penetrating based on whether they remain within an AR upon reaching selected transects over western North America. Interior-penetrating AR trajectories most frequently make landfall along the Oregon coast, but the greatest fraction of landfalling AR trajectories that eventually penetrate into the interior within an AR is found along the Baja Peninsula. In contrast, interior-penetrating AR trajectories rarely traverse the southern “high” Sierra. At landfall, interior-penetrating AR trajectories are associated with a more amplified flow pattern, more southwesterly (vs westerly) flow along the Pacific coast, and larger water vapor transport (). The larger initial of interior-penetrating AR trajectories is due primarily to larger initial water vapor q and wind speed υ for those initiated at 950 and 700 hPa, respectively.

Inland- and interior-penetrating AR trajectories maintain large over the interior partially due to increases in υ that offset decreases in q, particularly in the vicinity of topographical barriers. Therefore, synoptic conditions and trajectory pathways favoring larger initial at the coast, limited water vapor depletion by orographic precipitation, and increases in υ over the interior are keys to differentiating interior-penetrating from coastal-decaying ARs.

Corresponding author address: Jonathan J. Rutz, National Weather Service, Western Region Headquarters, Room 1235, 125 South State St., Salt Lake City, UT 84138. E-mail: jonathan.rutz@noaa.gov
Save