• Brand, S., 1970: Interaction of binary tropical cyclones of the western North Pacific Ocean. J. Appl. Meteor., 9, 433441, doi:10.1175/1520-0450(1970)009<0433:IOBTCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., , A. W. Robertson, , S. J. Gaffney, , P. Smyth, , and M. Ghil, 2007: Cluster analysis of typhoon tracks. Part I: General properties. J. Climate, 20, 36353653, doi:10.1175/JCLI4188.1.

    • Search Google Scholar
    • Export Citation
  • Carr, L. E., III, , and R. L. Elsberry, 1998: Objective diagnosis of binary tropical cyclone interactions for the western North Pacific basin. Mon. Wea. Rev., 126, 17341740, doi:10.1175/1520-0493(1998)126<1734:ODOBTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carr, L. E., III, , M. A. Boother, , and R. L. Elsberry, 1997: Observational evidence for alternate modes of track-altering binary tropical cyclone scenarios. Mon. Wea. Rev., 125, 20942111, doi:10.1175/1520-0493(1997)125<2094:OEFAMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., , and W. M. Gray, 1982: Tropical cyclone movement and surrounding flow relationships. Mon. Wea. Rev., 110, 13541374, doi:10.1175/1520-0493(1982)110<1354:TCMASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chand, S. S., , and K. J. E. Walsh, 2009: Tropical cyclone activity in the Fiji region: Spatial patterns and relationship to large-scale circulation. J. Climate, 22, 38773893, doi:10.1175/2009JCLI2880.1.

    • Search Google Scholar
    • Export Citation
  • Chang, S. W.-J., 1983: A numerical study of the interaction between two tropical cyclones. Mon. Wea. Rev., 111, 18061817, doi:10.1175/1520-0493(1983)111<1806:ANSOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 20762087, doi:10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., , and J. C. L. Chan, 1984: Comments on ‘‘A numerical study of the interactions between two tropical cyclones.” Mon. Wea. Rev., 112, 16431645, doi:10.1175/1520-0493(1984)112<1643:CONSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dong, K., , and C. J. Neumann, 1983: On the relative motion of binary tropical cyclones. Mon. Wea. Rev., 111, 945953, doi:10.1175/1520-0493(1983)111<0945:OTRMOB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dritschel, D. G., , and D. W. Waugh, 1992: Quantification of the inelastic interaction of unequal vortices in two-dimensional vortex dynamics. Phys. Fluids, 4A, 17371744, doi:10.1063/1.858394.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1988: The maximum intensity of tropical cyclones. J. Atmos. Sci., 45, 11431155, doi:10.1175/1520-0469(1988)045<1143:TMIOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., , S. Solomon, , D. Folini, , S. Davis, , and C. Cagnazzo, 2013: Influence of tropical tropopause layer cooling on Atlantic hurricane activity. J. Climate, 26, 22882301, doi:10.1175/JCLI-D-12-00242.1.

    • Search Google Scholar
    • Export Citation
  • Falkovich, A. I., , A. P. Khan, , and I. Ginis, 1995: Motion and evolution of binary tropical cyclones in a coupled atmosphere–ocean numerical model. Mon. Wea. Rev., 123, 13451363, doi:10.1175/1520-0493(1995)123<1345:MAEOBT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., , and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 22492269, doi:10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fujiwhara, S., 1921: The mutual tendency towards symmetry of motion and its application as a principle in meteorology. Quart. J. Roy. Meteor. Soc., 47, 287293, doi:10.1002/qj.49704720010.

    • Search Google Scholar
    • Export Citation
  • Fujiwhara, S., 1923: On the growth and decay of vortical systems. Quart. J. Roy. Meteor. Soc., 49, 75104, doi:10.1002/qj.49704920602.

    • Search Google Scholar
    • Export Citation
  • Fujiwhara, S., 1931: Short note on the behavior of two vortices. Proc. Phys. Math. Soc. Japan. Ser. 3, 13, 106110.

  • Gaffney, S., 2004: Probabilistic curve-aligned clustering and prediction with mixture models. Ph.D. dissertation, University of California, Irvine, 281 pp.

  • George, J. E., , and W. M. Gray, 1976: Tropical cyclone motion and surrounding parameter relationships. J. Appl. Meteor., 15, 12521264, doi:10.1175/1520-0450(1976)015<1252:TCMASP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ho, C.-H., , H.-S. Kim, , J.-H. Jeong, , and S.-W. Son, 2009: Influence of stratospheric quasi-biennial oscillation on tropical cyclone tracks in the western North Pacific. Geophys. Res. Lett., 36, L06702, doi:10.1029/2009GL037163.

    • Search Google Scholar
    • Export Citation
  • Huesmann, A. S., , and M. H. Hitchman, 2001: The stratospheric quasi-biennial oscillation in the NCEP reanalyses: Climatological structures. J. Geophys. Res., 106, 11 85911 874, doi:10.1029/2001JD900031.

    • Search Google Scholar
    • Export Citation
  • Jang, W., , and H.-Y. Chun, 2013: The effects of topography on the evolution of Typhoon Saomai (2006) under the influence of Tropical Storm Bopha (2006). Mon. Wea. Rev., 141, 468489, doi:10.1175/MWR-D-11-00241.1.

    • Search Google Scholar
    • Export Citation
  • Jarrell, J., , S. Brand, , and D. S. Nicklin, 1978: An analysis of western North Pacific tropical cyclone forecast errors. Mon. Wea. Rev., 106, 925937, doi:10.1175/1520-0493(1978)106<0925:AAOWNP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., , W. Ebisuzaki, , J. Woollen, , S.-K. Yang, , J. J. Hnilo, , M. Fiorino, , and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, doi:10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Khain, A., , I. Ginis, , A. Falkovich, , and M. Frumin, 2000: Interaction of binary tropical cyclones in a coupled tropical cyclone-ocean model. J. Geophys. Res., 105, 22 33722 354, doi:10.1029/2000JD900268.

    • Search Google Scholar
    • Export Citation
  • Kleinbaum, D. G., , L. L. Kupper, , K. E. Muller, , and A. Nizam, 1997: Applied Regression Analysis and Multivariable Methods. Duxbury Press, 816 pp.

    • Search Google Scholar
    • Export Citation
  • Kuo, H.-C., , G. T.-J. Chen, , and C.-H. Lin, 2000: Merger of tropical cyclones Zeb and Alex. Mon. Wea. Rev., 128, 29672975, doi:10.1175/1520-0493(2000)128<2967:MOTCZA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lander, M. A., 1994: An exploratory analysis of the relationship between tropical storm formation in the western North Pacific and ENSO. Mon. Wea. Rev., 122, 636651, doi:10.1175/1520-0493(1994)122<0636:AEAOTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lander, M. A., , and G. J. Holland, 1993: On the interaction of tropical-cyclone-scale vortices. I: Observation. Quart. J. Roy. Meteor. Soc., 119, 13471361, doi:10.1002/qj.49711951406.

    • Search Google Scholar
    • Export Citation
  • Lighthill, J., , G. Holland, , W. M. Gray, , C. Landsea, , G. Craig, , J. Evans, , Y. Kurihara, , and C. Guard, 1994: Global climate change and tropical cyclones. Bull. Amer. Meteor. Soc., 75, 21472157.

    • Search Google Scholar
    • Export Citation
  • McBride, J. L., 1995: Tropical cyclone formation. Global Perspectives on Tropical Cyclones, WMO/TD-693, J. C. L. Chan and J. D. Kepert, Eds., World Meteorological Organization, 63–105.

  • McBride, J. L., , and R. M. Zehr, 1981: Observational analysis of tropical cyclone formation. Part II: Comparison of nondeveloping versus developing systems. J. Atmos. Sci., 38, 11321151, doi:10.1175/1520-0469(1981)038<1132:OAOTCF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Merrill, R. T., 1988: Characteristics of the upper-tropospheric environmental flow around hurricanes. J. Atmos. Sci., 45, 16651677, doi:10.1175/1520-0469(1988)045<1665:COTUTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neumann, C. J., 1981: Trends in forecasting the tracks of Atlantic tropical cyclones. Bull. Amer. Meteor. Soc., 62, 14731485.

  • Pokhil, A. E., , I. G. Sitnikov, , V. A. Zlenko, , and I. V. Polyakova, 1990: Numerical experiments on investigation of atmospheric vortices. Meteor. Gidrol., 4, 2128.

    • Search Google Scholar
    • Export Citation
  • Prieto, R., , B. D. McNoldy, , S. R. Fulton, , and W. H. Schubert, 2003: A classification of binary tropical cyclone–like vortex interactions. Mon. Wea. Rev., 131, 26562666, doi:10.1175/1520-0493(2003)131<2656:ACOBTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., , T. M. Smith, , C. Liu, , D. B. Chelton, , K. S. Casey, , and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, doi:10.1175/2007JCLI1824.1.

    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., , and G. J. Holland, 1993: On the interaction of tropical-cyclone-scale vortices. II: Discrete vortex patches. Quart. J. Roy. Meteor. Soc., 119, 13631379, doi:10.1002/qj.49711951407.

    • Search Google Scholar
    • Export Citation
  • Shin, S.-E., , J.-Y. Han, , and J.-J. Baik, 2006: On the critical separation distance of binary vortices in a nondivergent barotropic atmosphere. J. Meteor. Soc. Japan, 84, 853869, doi:10.2151/jmsj.84.853.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , and Z. Fan, 1999: Choice of South Asian summer monsoon indices. Bull. Amer. Meteor. Soc., 80, 629638, doi:10.1175/1520-0477(1999)080<0629:COSASM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , R. Wu, , and K. M. Lau, 2001: Interannual variability of Asian summer monsoon: Contrast between the Indian and western North Pacific–East Asian monsoons. J. Climate, 14, 40734090, doi:10.1175/1520-0442(2001)014<4073:IVOTAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., , T.-S. Huang, , W.-P. Huang, , and K.-H. Chou, 2003: A new look at the binary interaction: Potential vorticity diagnosis of the unusual southward movement of Tropical Storm Bopha (2000) and its interaction with Supertyphoon Saomai (2000). Mon. Wea. Rev., 131, 12891300, doi:10.1175/1520-0493(2003)131<1289:ANLATB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, X., , J.-F. Fei, , X.-G. Huang, , X.-P. Cheng, , and J.-Q. Ren, 2011: Statistical classification and characteristics analysis of binary tropical cyclones over the western North Pacific Ocean. J. Trop. Meteor., 17, 335344.

    • Search Google Scholar
    • Export Citation
  • Wu, X., , J.-F. Fei, , X.-G. Huang, , X. Zhang, , X.-P. Cheng, , and J.-Q. Ren, 2012: A numerical study of the interaction between two simultaneous storms: Goni and Morakot in September 2009. Adv. Atmos. Sci., 29, 561574, doi:10.1007/s00376-011-1014-7.

    • Search Google Scholar
    • Export Citation
  • Yang, C.-C., , C.-C. Wu, , K.-H. Chou, , and C.-Y. Lee, 2008: Binary interaction between Typhoons Fengshen (2002) and Fungwong (2002) based on the potential vorticity diagnosis. Mon. Wea. Rev., 136, 45934611, doi:10.1175/2008MWR2496.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 22 22 2
PDF Downloads 12 12 0

Characteristics of Binary Tropical Cyclones Observed in the Western North Pacific for 62 Years (1951–2012)

View More View Less
  • 1 Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea
© Get Permissions
Restricted access

Abstract

The statistical and dynamical characteristics of binary tropical cyclones (TCs) observed in the western North Pacific (WNP) for 62 years (1951–2012) are investigated by using best track and reanalysis data. A total of 98 binary TCs occurred with an annual average of 1.58. The occurrence frequency of binary TCs shows significant year-to-year variations and there are two peaks in the mid-1960s and early 1990s. Three-fourths (76.3%) of the binary TCs occurred between July and September, which is consistent with the high activity season of TCs in general. A relatively higher track density for binary TCs is present to the east of the maximum track density for total TCs. This result is likely due to the differences in the locations of genesis and environmental steering flow between binary and total TCs. The poleward steering flow, weaker vertical wind shear, and warmer sea surface temperature are pronounced for binary TCs, and these result in a longer lifetime of TCs, which can increase the chances that they would be detected as binary TCs. By applying the clustering analysis technique, six representative trajectories of the binary TCs are obtained. The transitional speed and recurving location are significantly different with respect to the clustered types. The trajectories of each type are strongly related to the temporal variations in the environmental steering flow and the location of the North Pacific high.

Denotes Open Access content.

Corresponding author address: Dr. Hye-Yeong Chun, Department of Atmospheric Sciences, Yonsei University, 262 Seongsanno, Seodaemun-ku, Seoul 120-749, South Korea. E-mail: chunhy@yonsei.ac.kr

Abstract

The statistical and dynamical characteristics of binary tropical cyclones (TCs) observed in the western North Pacific (WNP) for 62 years (1951–2012) are investigated by using best track and reanalysis data. A total of 98 binary TCs occurred with an annual average of 1.58. The occurrence frequency of binary TCs shows significant year-to-year variations and there are two peaks in the mid-1960s and early 1990s. Three-fourths (76.3%) of the binary TCs occurred between July and September, which is consistent with the high activity season of TCs in general. A relatively higher track density for binary TCs is present to the east of the maximum track density for total TCs. This result is likely due to the differences in the locations of genesis and environmental steering flow between binary and total TCs. The poleward steering flow, weaker vertical wind shear, and warmer sea surface temperature are pronounced for binary TCs, and these result in a longer lifetime of TCs, which can increase the chances that they would be detected as binary TCs. By applying the clustering analysis technique, six representative trajectories of the binary TCs are obtained. The transitional speed and recurving location are significantly different with respect to the clustered types. The trajectories of each type are strongly related to the temporal variations in the environmental steering flow and the location of the North Pacific high.

Denotes Open Access content.

Corresponding author address: Dr. Hye-Yeong Chun, Department of Atmospheric Sciences, Yonsei University, 262 Seongsanno, Seodaemun-ku, Seoul 120-749, South Korea. E-mail: chunhy@yonsei.ac.kr
Save