A Balanced Tropical Cyclone Test Case for AGCMs with Background Vertical Wind Shear

Fei He Department of Atmospheric, Oceanic and Space Science, University of Michigan, Ann Arbor, Ann Arbor, Michigan

Search for other papers by Fei He in
Current site
Google Scholar
PubMed
Close
,
Derek J. Posselt Department of Atmospheric, Oceanic and Space Science, University of Michigan, Ann Arbor, Ann Arbor, Michigan

Search for other papers by Derek J. Posselt in
Current site
Google Scholar
PubMed
Close
,
Colin M. Zarzycki Department of Atmospheric, Oceanic and Space Science, University of Michigan, Ann Arbor, Ann Arbor, Michigan

Search for other papers by Colin M. Zarzycki in
Current site
Google Scholar
PubMed
Close
, and
Christiane Jablonowski Department of Atmospheric, Oceanic and Space Science, University of Michigan, Ann Arbor, Ann Arbor, Michigan

Search for other papers by Christiane Jablonowski in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper presents a balanced tropical cyclone (TC) test case designed to improve current understanding of how atmospheric general circulation model (AGCM) configurations affect simulated TC development and behavior. It consists of an analytic initial condition comprising two independently balanced components. The first provides a vortical TC seed, while the second adds a planetary-scale zonal flow with height-dependent velocity and imposes background vertical wind shear (VWS) on the TC seed. The environmental flow satisfies the steady-state hydrostatic primitive equations in spherical coordinates and is in balance with other background field variables (e.g., temperature, surface geopotential). The evolution of idealized TCs in the test case framework is illustrated in 10-day simulations performed with the Community Atmosphere Model, version 5.1.1 (CAM 5.1.1). Environmental wind profiles with different magnitudes, directions, and vertical inflection points are applied to ensure that the technique is robust to changes in the VWS characteristics. The well-known shear-induced intensity change and structural asymmetry in tropical cyclones are well captured. Sensitivity of TC evolution to small perturbations in the initial vortex is also quantitatively addressed to validate the numerical robustness of the technique. It is concluded that the enhanced TC test case can be used to evaluate the impact of model choice (e.g., resolution, physical parameterizations) on the simulation and representation of TC-like vortices in AGCMs.

Corresponding author address: Fei He, Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, 2455 Hayward St., Ann Arbor, MI 48109-2143. E-mail: hefei@umich.edu

Abstract

This paper presents a balanced tropical cyclone (TC) test case designed to improve current understanding of how atmospheric general circulation model (AGCM) configurations affect simulated TC development and behavior. It consists of an analytic initial condition comprising two independently balanced components. The first provides a vortical TC seed, while the second adds a planetary-scale zonal flow with height-dependent velocity and imposes background vertical wind shear (VWS) on the TC seed. The environmental flow satisfies the steady-state hydrostatic primitive equations in spherical coordinates and is in balance with other background field variables (e.g., temperature, surface geopotential). The evolution of idealized TCs in the test case framework is illustrated in 10-day simulations performed with the Community Atmosphere Model, version 5.1.1 (CAM 5.1.1). Environmental wind profiles with different magnitudes, directions, and vertical inflection points are applied to ensure that the technique is robust to changes in the VWS characteristics. The well-known shear-induced intensity change and structural asymmetry in tropical cyclones are well captured. Sensitivity of TC evolution to small perturbations in the initial vortex is also quantitatively addressed to validate the numerical robustness of the technique. It is concluded that the enhanced TC test case can be used to evaluate the impact of model choice (e.g., resolution, physical parameterizations) on the simulation and representation of TC-like vortices in AGCMs.

Corresponding author address: Fei He, Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, 2455 Hayward St., Ann Arbor, MI 48109-2143. E-mail: hefei@umich.edu
Save
  • Aiyyer, A. R., and C. Thorncroft, 2006: Climatology of vertical wind shear over the tropical Atlantic. J. Climate, 19, 2969–2983, doi:10.1175/JCLI3685.1.

    • Search Google Scholar
    • Export Citation
  • Bacmeister, J. T., M. F. Wehner, R. B. Neale, A. Gettelman, C. Hannay, P. H. Lauritzen, J. M. Caron, and J. E. Truesdale, 2014: Exploratory high-resolution climate simulations using the Community Atmosphere Model (CAM). J. Climate, 27, 3073–3099, doi:10.1175/JCLI-D-13-00387.1.

    • Search Google Scholar
    • Export Citation
  • Bell, M. M., and M. T. Montgomery, 2008: Observed structure, evolution, and potential intensity of category-5 Hurricane Isabel (2003) from 12 to 14 September. Mon. Wea. Rev., 136, 2023–2046, doi:10.1175/2007MWR1858.1.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., 1997: The effect of relative flow on the asymmetric structure of the interior of hurricanes. J. Atmos. Sci., 54, 703–724, doi:10.1175/1520-0469(1997)054<0703:TEORFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Black, M. L., J. F. Gamache, F. D. Marks Jr., D. E. Samsury, and H. E. Willoughby, 2002: Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: The effect of vertical wind shear on structure and intensity. Mon. Wea. Rev., 130, 2291–2312, doi:10.1175/1520-0493(2002)130<2291:EPHJOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Blackburn, M., and B. J. Hoskins, 2013: Context and aims of the aqua-planet experiment. J. Meteor. Soc. Japan,91A, 1–15, doi:10.2151/jmsj.2013-A01.

  • Bretherton, C. S., and S. Park, 2009: A new moist turbulence parameterization in the Community Atmosphere Model. J. Climate, 22, 3422–3448, doi:10.1175/2008JCLI2556.1.

    • Search Google Scholar
    • Export Citation
  • Burpee, R. W., and M. L. Black, 1989: Temporal and spatial variations of rainfall near the centers of two tropical cyclones. Mon. Wea. Rev., 117, 2204–2218, doi:10.1175/1520-0493(1989)117<2204:TASVOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., J. A. Knaff, and F. D. Marks, 2006: Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM. Mon. Wea. Rev., 134, 3190–3208, doi:10.1175/MWR3245.1.

    • Search Google Scholar
    • Export Citation
  • Cline, I. M., 1926: Tropical Cyclones. MacMillan, 301 pp.

  • DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 2076–2087, doi:10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., J. A. Knaff, and B. H. Connell, 2001: A tropical cyclone genesis parameter for the tropical Atlantic. Wea. Forecasting, 16, 219–233, doi:10.1175/1520-0434(2001)016<0219:ATCGPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2000: A statistical analysis of tropical cyclone intensity. Mon. Wea. Rev., 128, 1139–1152, doi:10.1175/1520-0493(2000)128<1139:ASAOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and D. S. Nolan, 2004: Tropical cyclone activity and the global climate. 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 10A.2. [Available online at https://ams.confex.com/ams/26HURR/techprogram/paper_75463.htm.]

  • Flatau, M., W. H. Schubert, and D. E. Stevens, 1994: The role of baroclinic processes in tropical cyclone motion. Part I: The influence of vertical tilt. J. Atmos. Sci., 51, 2589–2601, doi:10.1175/1520-0469(1994)051<2589:TROBPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 1999: Effects of environmental flow upon tropical cyclone structure. Mon. Wea. Rev., 127, 2044–2061, doi:10.1175/1520-0493(1999)127<2044:EOEFUT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 2249–2269, doi:10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Franklin, J. L., S. J. Lord, S. E. Feuer, and F. D. Marks Jr., 1993: The kinematic structure of Hurricane Gloria (1985) determined from nested analyses of dropwindsonde and Doppler radar data. Mon. Wea. Rev., 121, 2433–2451, doi:10.1175/1520-0493(1993)121<2433:TKSOHG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ge, X. Y., T. Li, and M. Peng, 2013: Effects of vertical shears and midlevel dry air on tropical cyclone developments. J. Atmos. Sci., 70, 3859–3875, doi:10.1175/JAS-D-13-066.1.

    • Search Google Scholar
    • Export Citation
  • Gentry, M. S., and G. M. Lackmann, 2010: Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution. Mon. Wea. Rev., 138, 688–704, doi:10.1175/2009MWR2976.1.

    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., and L. J. Shapiro, 1996: Physical mechanisms for the association of El Niño and West African rainfall with Atlantic major hurricanes. J. Climate, 9, 1169–1187, doi:10.1175/1520-0442(1996)009<1169:PMFTAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., C. Landsea, A. M. Mestas-Nunez, and W. M. Gray, 2001: The recent increase in Atlantic hurricane activity. Science, 293, 474–479, doi:10.1126/science.1060040.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669–700, doi:10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1975: Tropical cyclone genesis. Dept. of Atmospheric Sciences Paper 234, Colorado State University, Ft. Collins, CO, 127 pp.

  • Holland, G. J., 1983: Tropical cyclone motion: Environmental interaction plus a beta effect. J. Atmos. Sci., 40, 328–342, doi:10.1175/1520-0469(1983)040<0328:TCMEIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Summary for policymakers. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1–29.

  • Jablonowski, C., and D. L. Williamson, 2006a: A baroclinic instabilitiy test case for atmospheric model dynamical cores. Quart. J. Roy. Meteor. Soc., 132, 2943–2975, doi:10.1256/qj.06.12.

    • Search Google Scholar
    • Export Citation
  • Jablonowski, C., and D. L. Williamson, 2006b: A baroclinic wave test case for dynamical cores of general circulation models: Model intercomparisons. NCAR Tech. Note NCAR/TN-469+STR, NCAR, Boulder, CO, 89 pp.

  • Jones, S. C., 1995: The evolution of vortices in vertical shear. I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121, 821–851, doi:10.1002/qj.49712152406.

    • Search Google Scholar
    • Export Citation
  • Marks, F. D., Jr., 1985: Evolution of the structure of precipitation in Hurricane Allen (1980). Mon. Wea. Rev., 113, 909–930, doi:10.1175/1520-0493(1985)113<0909:EOTSOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+STR, NCAR, Boulder, CO, 282 pp.

  • Nolan, D. S., and E. D. Rappin, 2008: Increased sensitivity of tropical cyclogenesis to wind shear in higher SST environments. Geophys. Res. Lett., 35, L14805, doi:10.1029/2008GL034147.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and M. G. McGauley, 2012: Tropical cyclogenesis in wind shear: Climatological relationships and physical process. Cyclones: Formation, Triggers, and Control, K. Oouchi and H. Fudeyasu, Eds., Nova Science Publishers, 1–34.

  • Park, S., and C. S. Bretherton, 2009: The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model. J. Climate, 22, 3449–3469, doi:10.1175/2008JCLI2557.1.

    • Search Google Scholar
    • Export Citation
  • Paterson, L. A., B. N. Hanstrum, N. E. Davidson, and H. C. Weber, 2005: Influence of environmental vertical wind shear on the intensity of hurricane-strength tropical cyclones in the Australian region. Mon. Wea. Rev., 133, 3644–3660, doi:10.1175/MWR3041.1.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 589–662.

  • Rappin, E. D., and D. S. Nolan, 2012: The effect of vertical shear orientation on tropical cyclogenesis. Quart. J. Roy. Meteor. Soc., 138, 1035–1054, doi:10.1002/qj.977.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, and L. D. Grasso, 2004: A new look at the problem of tropical cyclones in vertical wind shear: Vortex resiliency. J. Atmos. Sci., 61, 3–22, doi:10.1175/1520-0469(2004)061<0003:ANLATP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., R. Rogers, and S. Lorsolo, 2013: Environmental flow impacts on tropical cyclone structure diagnosed from airborne Doppler radar composites. Mon. Wea. Rev., 141, 2949–2969, doi:10.1175/MWR-D-12-00334.1.

    • Search Google Scholar
    • Export Citation
  • Reed, K. A., and C. Jablonowski, 2011a: An analytic vortex initialization technique for idealized tropical cyclone studies in AGCMs. Mon. Wea. Rev., 139, 689–710, doi:10.1175/2010MWR3488.1.

    • Search Google Scholar
    • Export Citation
  • Reed, K. A., and C. Jablonowski, 2011b: Impact of physical parameterizations on idealized tropical cyclones in the Community Atmosphere Model. Geophys. Res. Lett., 38, L04805, doi:10.1029/2010GL046297.

    • Search Google Scholar
    • Export Citation
  • Reed, K. A., and C. Jablonowski, 2011c: Assessing the uncertainty in tropical cyclone simulations in NCAR’s Community Atmosphere Model. J. Adv. Model. Earth Syst., 3, M08002, doi:10.1029/2011MS000076.

    • Search Google Scholar
    • Export Citation
  • Reed, K. A., and C. Jablonowski, 2012: Idealized tropical cyclone simulations of intermediate complexity: A test case for AGCMs. J. Adv. Model. Earth Syst., 4, M04001, doi:10.1029/2011MS000099.

    • Search Google Scholar
    • Export Citation
  • Riehl, H., and R. J. Shafter, 1944: The recurvature of tropical storms. J. Meteor., 1, 42–54, doi:10.1175/1520-0469(1944)001<0001:TROTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Riemer, M., and M. T. Montgomery, 2011: Simple kinematic models for the environmental interaction of tropical cyclones in vertical wind shear. Atmos. Chem. Phys., 11, 9395–9414, doi:10.5194/acp-11-9395-2011.

    • Search Google Scholar
    • Export Citation
  • Riemer, M., M. T. Montgomery, and M. E. Nicholls, 2010: A new paradigm for intensity modification of tropical cyclones: Thermodynamic impact of vertical wind shear on the inflow layer. Atmos. Chem. Phys., 10, 3163–3188, doi:10.5194/acp-10-3163-2010.

    • Search Google Scholar
    • Export Citation
  • Riemer, M., M. T. Montgomery, and M. E. Nicholls, 2013: Further examination of the thermodynamic modification of the inflow layer of tropical cyclones by vertical wind shear. Atmos. Chem. Phys., 13, 327–346, doi:10.5194/acp-13-327-2013.

    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., and W. M. Frank, 2007: Interactions between simulated tropical cyclones and an environment with a variable Coriolis parameter. Mon. Wea. Rev., 135, 1889–1905, doi:10.1175/MWR3359.1.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., P. Reasor, and S. Lorsolo, 2013: Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon. Wea. Rev.,141, 2970–2991, doi:10.1175/MWR-D-12-00357.1.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., Y. Chen, W. Wang, C. Davis, J. Dudhia, and G. J. Holland, 2009: Large-eddy simulation of an idealized tropical cyclone. Bull. Amer. Meteor. Soc., 90, 1783–1788, doi:10.1175/2009BAMS2884.1.

    • Search Google Scholar
    • Export Citation
  • Schecter, D., M. Montgomery, and P. Reasor, 2002: A theory for the vertical alignment of a quasigeostrophic vortex. J. Atmos. Sci., 59, 150–168, doi:10.1175/1520-0469(2002)059<0150:ATFTVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and D. M. Burridge, 1981: An energy and angular-momentum conserving vertical finite difference scheme and hybrid vertical coordinates. Mon. Wea. Rev., 109, 758–766, doi:10.1175/1520-0493(1981)109<0758:AEAAMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simpson, R., and R. Riehl, 1958: Mid-tropospheric ventilation as a constraint on hurricane development and maintenance. Preprints, Tech. Conf. on Hurricanes, Miami Beach, FL, Amer. Meteor. Soc., D4-1–D4-10.

  • Smith, R., W. Ulrich, and G. Sneddon, 2000: On the dynamics of hurricane-like vortices in vertical-shear flows. Quart. J. Roy. Meteor. Soc., 126, 2653–2670, doi:10.1002/qj.49712656903.

    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., and Coauthors, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp. [Available online at www.climatechange2013.org/images/report/WG1AR5_ALL_FINAL.pdf.]

  • Strachan, J., P. L. Vidale, K. Hodges, M. Roberts, and M.-E. Demory, 2013: Investigating global tropical cyclone activity with a hierarchy of AGCMs: The role of model resolution. J. Climate, 26, 133–152, doi:10.1175/JCLI-D-12-00012.1.

    • Search Google Scholar
    • Export Citation
  • Tang, B., and K. A. Emanuel, 2010: Midlevel ventilation’s constraint on tropical cyclone intensity. J. Atmos. Sci., 67, 1817–1830, doi:10.1175/2010JAS3318.1.

    • Search Google Scholar
    • Export Citation
  • Tuleya, R. E., and Y. Kurihara, 1981: A numerical study on the effects of environmental flow on tropical cyclone genesis. Mon. Wea. Rev., 109, 2487–2506, doi:10.1175/1520-0493(1981)109<2487:ANSOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ueno, M., 2007: Observational analysis and numerical evaluation of the effects of vertical wind shear on the rainfall asymmetry in the typhoon inner-core region. J. Meteor. Soc. Japan, 85, 115–136, doi:10.2151/jmsj.85.115.

    • Search Google Scholar
    • Export Citation
  • Walsh, K. J. E., and Coauthors, 2015: Hurricanes and climate: The U.S. CLIVAR working group on hurricanes. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-13-00242.1, in press.

    • Search Google Scholar
    • Export Citation
  • Wingo, M. T., and D. J. Cecil, 2010: Effects of vertical wind shear on tropical cyclone precipitation. Mon. Wea. Rev., 138, 645–662, doi:10.1175/2009MWR2921.1.

    • Search Google Scholar
    • Export Citation
  • Wong, M. L. M., and J. C. L. Chan, 2004: Tropical cyclone intensity in vertical wind shear. J. Atmos. Sci., 61, 1859–1876, doi:10.1175/1520-0469(2004)061<1859:TCIIVW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., and K. A. Emanuel, 1993: Interaction of a baroclinic vortex with background shear: Application to hurricane movement. J. Atmos. Sci., 50, 62–76, doi:10.1175/1520-0469(1993)050<0062:IOABVW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, L., and S. Braun, 2004: Effects of environmentally induced asymmetries on hurricane intensity: A numerical study. J. Atmos. Sci., 61, 3065–3081, doi:10.1175/JAS-3343.1.

    • Search Google Scholar
    • Export Citation
  • Zarzycki, C. M., and C. Jablonowski, 2014: A multidecadal simulation of Atlantic tropical cyclones using a variable-resolution global atmospheric general circulation model. J. Adv. Model. Earth Syst., 6, 805–828, doi:10.1002/2014MS000352.

    • Search Google Scholar
    • Export Citation
  • Zarzycki, C. M., C. Jablonowski, and M. A. Taylor, 2014: Using variable-resolution meshes to model tropical cyclones in the Community Atmosphere Model. Mon. Wea. Rev., 142, 1221–1239, doi:10.1175/MWR-D-13-00179.1.

    • Search Google Scholar
    • Export Citation
  • Zehr, R. M., 1992: Tropical cyclogenesis in the western Pacific. NOAA Tech. Rep. NESDIS 61, 181 pp.

  • Zehr, R. M., 2003: Environmental vertical wind shear with Hurricane Bertha (1996). Wea. Forecasting, 18, 345–356, doi:10.1175/1520-0434(2003)018<0345:EVWSWH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zeng, Z., L. Chen, and Y. Wang, 2008: An observational study of environmental dynamical control of tropical cyclone intensity in the Atlantic. Mon. Wea. Rev., 136, 3307–3322, doi:10.1175/2008MWR2388.1.

    • Search Google Scholar
    • Export Citation
  • Zeng, Z., Y. Q. Wang, and L. S. Chen, 2010: A statistical analysis of vertical shear effect on tropical cyclone intensity change in the North Atlantic. Geophys. Res. Lett., 37, L02802, doi:10.1029/2009GL041788.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., and D. Tao, 2013: Effects of vertical wind shear on the predictability of tropical cyclones. J. Atmos. Sci., 70, 975–983, doi:10.1175/JAS-D-12-0133.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre General Circulation Model. Atmos.–Ocean, 33, 407–446, doi:10.1080/07055900.1995.9649539.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 567 344 46
PDF Downloads 206 53 4