High-Order Finite-Volume Transport on the Cubed Sphere: Comparison between 1D and 2D Reconstruction Schemes

Kiran K. Katta University of Texas at El Paso, El Paso, Texas

Search for other papers by Kiran K. Katta in
Current site
Google Scholar
PubMed
Close
,
Ramachandran D. Nair National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Ramachandran D. Nair in
Current site
Google Scholar
PubMed
Close
, and
Vinod Kumar University of Texas at El Paso, El Paso, Texas

Search for other papers by Vinod Kumar in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

This paper presents two finite-volume (FV) schemes for solving linear transport problems on the cubed-sphere grid system. The schemes are based on the central-upwind finite-volume (CUFV) method, which is a class of Godunov-type method for solving hyperbolic conservation laws, and combines the attractive features of the classical upwind and central FV methods. One of the CUFV schemes is based on a dimension-by-dimension approach and employs a fifth-order one-dimensional (1D) Weighted Essentially Nonoscillatory (WENO5) reconstruction method. The other scheme employs a fully two-dimensional (2D) fourth-order accurate reconstruction method. The cubed-sphere grid system imposes several computational challenges due to its patched-domain topology and nonorthogonal curvilinear grid structure. A high-order 1D interpolation procedure combining cubic and quadratic interpolations is developed for the FV schemes to handle the discontinuous edges of the cubed-sphere grid. The WENO5 scheme is compared against the fourth-order Kurganov–Levy (KL) scheme formulated in the CUFV framework. The performance of the schemes is compared using several benchmark problems such as the solid-body rotation and deformational-flow tests, and empirical convergence rates are reported. In addition, a bound-preserving filter combined with an optional positivity-preserving filter is tested for nonsmooth problems. The filtering techniques considered are local, inexpensive, and effective. A fourth-order strong stability preserving explicit Runge–Kutta time-stepping scheme is used for integration. The results show that schemes are competitive to other published FV schemes in the same category.

Corresponding author address: Vinod Kumar, The University of Texas at El Paso, 500 W. University Ave., Engineering Building, Room A-219, El Paso, TX 79902. E-mail: vkumar@utep.edu

Abstract

This paper presents two finite-volume (FV) schemes for solving linear transport problems on the cubed-sphere grid system. The schemes are based on the central-upwind finite-volume (CUFV) method, which is a class of Godunov-type method for solving hyperbolic conservation laws, and combines the attractive features of the classical upwind and central FV methods. One of the CUFV schemes is based on a dimension-by-dimension approach and employs a fifth-order one-dimensional (1D) Weighted Essentially Nonoscillatory (WENO5) reconstruction method. The other scheme employs a fully two-dimensional (2D) fourth-order accurate reconstruction method. The cubed-sphere grid system imposes several computational challenges due to its patched-domain topology and nonorthogonal curvilinear grid structure. A high-order 1D interpolation procedure combining cubic and quadratic interpolations is developed for the FV schemes to handle the discontinuous edges of the cubed-sphere grid. The WENO5 scheme is compared against the fourth-order Kurganov–Levy (KL) scheme formulated in the CUFV framework. The performance of the schemes is compared using several benchmark problems such as the solid-body rotation and deformational-flow tests, and empirical convergence rates are reported. In addition, a bound-preserving filter combined with an optional positivity-preserving filter is tested for nonsmooth problems. The filtering techniques considered are local, inexpensive, and effective. A fourth-order strong stability preserving explicit Runge–Kutta time-stepping scheme is used for integration. The results show that schemes are competitive to other published FV schemes in the same category.

Corresponding author address: Vinod Kumar, The University of Texas at El Paso, 500 W. University Ave., Engineering Building, Room A-219, El Paso, TX 79902. E-mail: vkumar@utep.edu
Save
  • Adamy, K., B. Bousquet, S. Faure, J. Lammie, and R. Temam, 2010: A multilevel method for finite volume discretization of the two-dimensional nonlinear shallow-water equations. Ocean Modell., 33, 235256, doi:10.1016/j.ocemod.2010.02.006.

    • Search Google Scholar
    • Export Citation
  • Blossey, P. N., and D. R. Durran, 2008: Selective monotonicity preservation in scalar advection. J. Comput. Phys., 227, 51605183, doi:10.1016/j.jcp.2008.01.043.

    • Search Google Scholar
    • Export Citation
  • Byron, S., and D. Levy, 2006: On the total variation of high-order semi-discrete central schemes for conservation laws. J. Sci. Comput., 27, 163175, doi:10.1007/s10915-005-9046-8.

    • Search Google Scholar
    • Export Citation
  • Chen, C., and F. Xiao, 2008: Shallow water model on cubed-sphere by multi-moment finite volume method. J. Comput. Phys., 227, 50195044, doi:10.1016/j.jcp.2008.01.033.

    • Search Google Scholar
    • Export Citation
  • Cheruvu, V., R. D. Nair, and H. M. Tufo, 2007: A spectral finite volume transport scheme on the cubed-sphere. Appl. Numer. Math., 57, 10211032, doi:10.1016/j.apnum.2006.09.008.

    • Search Google Scholar
    • Export Citation
  • Colella, P., and P. R. Woodward, 1984: The Piecewise Parabolic Method (PPM) for gas-dynamical simulations. J. Comput. Phys., 54, 174201, doi:10.1016/0021-9991(84)90143-8.

    • Search Google Scholar
    • Export Citation
  • Croisille, J.-P., 2013: Hermitian compact interpolation on the cubed-sphere grid. J. Sci. Comput., 57, 193212, doi:10.1007/s10915-013-9702-3.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1999: Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. Springer-Verlag, 465 pp.

  • Erath, C., and R. D. Nair, 2014: A conservative multi-tracer transport scheme for spectral-element spherical grids. J. Comput. Phys., 256, 118134, doi:10.1016/j.jcp.2013.08.050.

    • Search Google Scholar
    • Export Citation
  • Godunov, K. O., 1959: A difference scheme for numerical solution of discontinuous solution of hydrodynamic equations. Math. Sbornik, 47, 271306.

    • Search Google Scholar
    • Export Citation
  • Gottlieb, S., C.-W. Shu, and E. Tadmor, 2001: Strong stability-preserving high-order time discretization methods. SIAM Rev., 43, 89112, doi:10.1137/S003614450036757X.

    • Search Google Scholar
    • Export Citation
  • Kurganov, A., and D. Levy, 2000: A third-order semidiscrete central scheme for conservation laws and convection-diffusion equations. SIAM J. Sci. Comput., 22, 14611468, doi:10.1137/S1064827599360236.

    • Search Google Scholar
    • Export Citation
  • Kurganov, A., and G. Petrova, 2001: A third-order semi-discrete genuinely multidimensional central scheme for hyperbolic conservation laws and related problems. Numer. Math., 88, 683729, doi:10.1007/PL00005455.

    • Search Google Scholar
    • Export Citation
  • Kurganov, A., and Y. Liu, 2012: New adaptive artificial viscosity method for hyperbolic systems of conservation laws. J. Comput. Phys., 231, 81148134, doi:10.1016/j.jcp.2012.07.040.

    • Search Google Scholar
    • Export Citation
  • Lauritzen, P. H., R. D. Nair, and P. A. Ullrich, 2010: A conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed-sphere grid. J. Comput. Phys., 229, 14011424, doi:10.1016/j.jcp.2009.10.036.

    • Search Google Scholar
    • Export Citation
  • Lauritzen, P. H., W. Skamarock, M. Prather, and M. Taylor, 2012: A standard test case suite for two-dimensional linear transport on the sphere. Geosci. Model Dev., 5, 887901, doi:10.5194/gmd-5-887-2012.

    • Search Google Scholar
    • Export Citation
  • Levy, M. N., R. D. Nair, and H. M. Tufo, 2007: High-order Galerkin method for scalable global atmopsheric models. Comput. Geosci., 33, 10221035, doi:10.1016/j.cageo.2006.12.004.

    • Search Google Scholar
    • Export Citation
  • Liu, X., and E. Tadmor, 1998: Third order non-oscillatory central scheme for hyperbolic conservation laws. Numer. Math., 79, 397425, doi:10.1007/s002110050345.

    • Search Google Scholar
    • Export Citation
  • Liu, X., S. Osher, and T. Chen, 1994: Weighted essentially non-oscillatory schemes. J. Comput. Phys., 115, 200212, doi:10.1006/jcph.1994.1187.

    • Search Google Scholar
    • Export Citation
  • Nair, R. D., and C. Jablonowski, 2008: Moving vortices on the sphere: A test case for horizontal advection problems. Mon. Wea. Rev., 136, 699711, doi:10.1175/2007MWR2105.1.

    • Search Google Scholar
    • Export Citation
  • Nair, R. D., and P. H. Lauritzen, 2010: A class of deformational flow test cases for linear transport problems on the sphere. J. Comput. Phys., 229, 88688887, doi:10.1016/j.jcp.2010.08.014.

    • Search Google Scholar
    • Export Citation
  • Nair, R. D., and K. K. Katta, 2013: The central-upwind finite-volume method for atmospheric numerical modeling. Recent Advances in Scientific Computing and Applications, J. Li, H. Yang, and E. Machorro, Eds., American Mathematical Society, 277–286.

  • Nair, R. D., S. Thomas, and R. Loft, 2005: A discontinuous Galerkin transport scheme on the cubed sphere. Mon. Wea. Rev., 133, 814828, doi:10.1175/MWR2890.1.

    • Search Google Scholar
    • Export Citation
  • Norman, M. R., R. D. Nair, and F. H. M. Semazzi, 2011: A low communication and large time step explicit finite-volume solver for non-hydrostatic atmospheric dynamics. J. Comput. Phys., 230, 15671584, doi:10.1016/j.jcp.2010.11.022.

    • Search Google Scholar
    • Export Citation
  • Putman, W. M., and S.-J. Lin, 2007: Finite-volume transport on various cubed-sphere grids. J. Comput. Phys., 227, 5578, doi:10.1016/j.jcp.2007.07.022.

    • Search Google Scholar
    • Export Citation
  • Rančić, M., R. Purser, and F. Mesinger, 1996: A global shallow water model using an expanded spherical cube. Quart. J. Roy. Meteor. Soc., 122, 959982, doi:10.1002/qj.49712253209.

    • Search Google Scholar
    • Export Citation
  • Ronchi, C., R. Iacono, and P. S. Paolucci, 1996: The cubed sphere: A new method for the solution of partial differential equations in spherical geometry. J. Comput. Phys., 124, 93114, doi:10.1006/jcph.1996.0047.

    • Search Google Scholar
    • Export Citation
  • Rossmanith, J. A., 2006: A wave propagation method for hyperbolic systems on the sphere. J. Comput. Phys., 213, 629658, doi:10.1016/j.jcp.2005.08.027.

    • Search Google Scholar
    • Export Citation
  • Sadourny, R., 1972: Conservative finite-difference approximations of the primitive equations on quasi-uniform spherical grids. Mon. Wea. Rev., 100, 136144, doi:10.1175/1520-0493(1972)100<0136:CFAOTP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shu, C.-W., 1997: Essentially non-oscillatory and weighed essentially non-oscillatory schemes for hyperbolic conservation laws. Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, A. Quarteroni, Ed., Vol. 1697, Lecture Notes in Mathematics, Springer, 325–432, doi:10.1007/BFb0096355.

  • Smolarkiewicz, P., 1989: Comments on “A positive definite advection scheme obtained by nonlinear renormalization of the advective fluxes.” Mon. Wea. Rev., 117, 26262632, doi:10.1175/1520-0493(1989)117<2626:COPDAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Spiteri, R. J., and S. J. Ruuth, 2002: A new class of optimal high-order strong-stability-preserving time discretization methods. SIAM J. Numer. Anal., 40, 469491, doi:10.1137/S0036142901389025.

    • Search Google Scholar
    • Export Citation
  • Toro, E. F., 1999: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. 2nd ed. Springer-Verlag, 18 pp.

  • Ullrich, P. A., C. Jablonowski, and B. van Leer, 2010: High-order finite-volume methods for the shallow-water equations on the sphere. J. Comput. Phys., 229, 61046134, doi:10.1016/j.jcp.2010.04.044.

    • Search Google Scholar
    • Export Citation
  • van Leer, B., 1974: Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. J. Comput. Phys., 14, 361370, doi:10.1016/0021-9991(74)90019-9.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., J. B. Drake, J. J. Hack, R. Jakob, and P. N. Swarztrauber, 1992: A standard test set for numerical approximations to the shallow water equations in spherical geometry. J. Comput. Phys., 102, 211224, doi:10.1016/S0021-9991(05)80016-6.

    • Search Google Scholar
    • Export Citation
  • Yang, C., and X. Cai, 2011: Parallel multilevel methods for implicit solution of shallow water equations with nonsmooth topography on the cubed-sphere. J. Comput. Phys., 230, 25232539, doi:10.1016/j.jcp.2010.12.027.

    • Search Google Scholar
    • Export Citation
  • Yang, C., J. Cao, and X. Cai, 2010: A fully implicit domain decomposition algorithm for shallow water equations on the cubed-sphere. SIAM J. Sci. Comput., 32, 418438, doi:10.1137/080727348.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., and C.-W. Shu, 2010: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys., 229, 30913120, doi:10.1016/j.jcp.2009.12.030.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and R. D. Nair, 2012: A nonoscillatory discontinuous Galerkin transport scheme on the cubed sphere. Mon. Wea. Rev., 140, 31063126, doi:10.1175/MWR-D-11-00287.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 789 323 62
PDF Downloads 558 115 10