• Adamy, K., B. Bousquet, S. Faure, J. Lammie, and R. Temam, 2010: A multilevel method for finite volume discretization of the two-dimensional nonlinear shallow-water equations. Ocean Modell., 33, 235256, doi:10.1016/j.ocemod.2010.02.006.

    • Search Google Scholar
    • Export Citation
  • Blossey, P. N., and D. R. Durran, 2008: Selective monotonicity preservation in scalar advection. J. Comput. Phys., 227, 51605183, doi:10.1016/j.jcp.2008.01.043.

    • Search Google Scholar
    • Export Citation
  • Byron, S., and D. Levy, 2006: On the total variation of high-order semi-discrete central schemes for conservation laws. J. Sci. Comput., 27, 163175, doi:10.1007/s10915-005-9046-8.

    • Search Google Scholar
    • Export Citation
  • Chen, C., and F. Xiao, 2008: Shallow water model on cubed-sphere by multi-moment finite volume method. J. Comput. Phys., 227, 50195044, doi:10.1016/j.jcp.2008.01.033.

    • Search Google Scholar
    • Export Citation
  • Cheruvu, V., R. D. Nair, and H. M. Tufo, 2007: A spectral finite volume transport scheme on the cubed-sphere. Appl. Numer. Math., 57, 10211032, doi:10.1016/j.apnum.2006.09.008.

    • Search Google Scholar
    • Export Citation
  • Colella, P., and P. R. Woodward, 1984: The Piecewise Parabolic Method (PPM) for gas-dynamical simulations. J. Comput. Phys., 54, 174201, doi:10.1016/0021-9991(84)90143-8.

    • Search Google Scholar
    • Export Citation
  • Croisille, J.-P., 2013: Hermitian compact interpolation on the cubed-sphere grid. J. Sci. Comput., 57, 193212, doi:10.1007/s10915-013-9702-3.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1999: Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. Springer-Verlag, 465 pp.

  • Erath, C., and R. D. Nair, 2014: A conservative multi-tracer transport scheme for spectral-element spherical grids. J. Comput. Phys., 256, 118134, doi:10.1016/j.jcp.2013.08.050.

    • Search Google Scholar
    • Export Citation
  • Godunov, K. O., 1959: A difference scheme for numerical solution of discontinuous solution of hydrodynamic equations. Math. Sbornik, 47, 271306.

    • Search Google Scholar
    • Export Citation
  • Gottlieb, S., C.-W. Shu, and E. Tadmor, 2001: Strong stability-preserving high-order time discretization methods. SIAM Rev., 43, 89112, doi:10.1137/S003614450036757X.

    • Search Google Scholar
    • Export Citation
  • Kurganov, A., and D. Levy, 2000: A third-order semidiscrete central scheme for conservation laws and convection-diffusion equations. SIAM J. Sci. Comput., 22, 14611468, doi:10.1137/S1064827599360236.

    • Search Google Scholar
    • Export Citation
  • Kurganov, A., and G. Petrova, 2001: A third-order semi-discrete genuinely multidimensional central scheme for hyperbolic conservation laws and related problems. Numer. Math., 88, 683729, doi:10.1007/PL00005455.

    • Search Google Scholar
    • Export Citation
  • Kurganov, A., and Y. Liu, 2012: New adaptive artificial viscosity method for hyperbolic systems of conservation laws. J. Comput. Phys., 231, 81148134, doi:10.1016/j.jcp.2012.07.040.

    • Search Google Scholar
    • Export Citation
  • Lauritzen, P. H., R. D. Nair, and P. A. Ullrich, 2010: A conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed-sphere grid. J. Comput. Phys., 229, 14011424, doi:10.1016/j.jcp.2009.10.036.

    • Search Google Scholar
    • Export Citation
  • Lauritzen, P. H., W. Skamarock, M. Prather, and M. Taylor, 2012: A standard test case suite for two-dimensional linear transport on the sphere. Geosci. Model Dev., 5, 887901, doi:10.5194/gmd-5-887-2012.

    • Search Google Scholar
    • Export Citation
  • Levy, M. N., R. D. Nair, and H. M. Tufo, 2007: High-order Galerkin method for scalable global atmopsheric models. Comput. Geosci., 33, 10221035, doi:10.1016/j.cageo.2006.12.004.

    • Search Google Scholar
    • Export Citation
  • Liu, X., and E. Tadmor, 1998: Third order non-oscillatory central scheme for hyperbolic conservation laws. Numer. Math., 79, 397425, doi:10.1007/s002110050345.

    • Search Google Scholar
    • Export Citation
  • Liu, X., S. Osher, and T. Chen, 1994: Weighted essentially non-oscillatory schemes. J. Comput. Phys., 115, 200212, doi:10.1006/jcph.1994.1187.

    • Search Google Scholar
    • Export Citation
  • Nair, R. D., and C. Jablonowski, 2008: Moving vortices on the sphere: A test case for horizontal advection problems. Mon. Wea. Rev., 136, 699711, doi:10.1175/2007MWR2105.1.

    • Search Google Scholar
    • Export Citation
  • Nair, R. D., and P. H. Lauritzen, 2010: A class of deformational flow test cases for linear transport problems on the sphere. J. Comput. Phys., 229, 88688887, doi:10.1016/j.jcp.2010.08.014.

    • Search Google Scholar
    • Export Citation
  • Nair, R. D., and K. K. Katta, 2013: The central-upwind finite-volume method for atmospheric numerical modeling. Recent Advances in Scientific Computing and Applications, J. Li, H. Yang, and E. Machorro, Eds., American Mathematical Society, 277–286.

  • Nair, R. D., S. Thomas, and R. Loft, 2005: A discontinuous Galerkin transport scheme on the cubed sphere. Mon. Wea. Rev., 133, 814828, doi:10.1175/MWR2890.1.

    • Search Google Scholar
    • Export Citation
  • Norman, M. R., R. D. Nair, and F. H. M. Semazzi, 2011: A low communication and large time step explicit finite-volume solver for non-hydrostatic atmospheric dynamics. J. Comput. Phys., 230, 15671584, doi:10.1016/j.jcp.2010.11.022.

    • Search Google Scholar
    • Export Citation
  • Putman, W. M., and S.-J. Lin, 2007: Finite-volume transport on various cubed-sphere grids. J. Comput. Phys., 227, 5578, doi:10.1016/j.jcp.2007.07.022.

    • Search Google Scholar
    • Export Citation
  • Rančić, M., R. Purser, and F. Mesinger, 1996: A global shallow water model using an expanded spherical cube. Quart. J. Roy. Meteor. Soc., 122, 959982, doi:10.1002/qj.49712253209.

    • Search Google Scholar
    • Export Citation
  • Ronchi, C., R. Iacono, and P. S. Paolucci, 1996: The cubed sphere: A new method for the solution of partial differential equations in spherical geometry. J. Comput. Phys., 124, 93114, doi:10.1006/jcph.1996.0047.

    • Search Google Scholar
    • Export Citation
  • Rossmanith, J. A., 2006: A wave propagation method for hyperbolic systems on the sphere. J. Comput. Phys., 213, 629658, doi:10.1016/j.jcp.2005.08.027.

    • Search Google Scholar
    • Export Citation
  • Sadourny, R., 1972: Conservative finite-difference approximations of the primitive equations on quasi-uniform spherical grids. Mon. Wea. Rev., 100, 136144, doi:10.1175/1520-0493(1972)100<0136:CFAOTP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shu, C.-W., 1997: Essentially non-oscillatory and weighed essentially non-oscillatory schemes for hyperbolic conservation laws. Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, A. Quarteroni, Ed., Vol. 1697, Lecture Notes in Mathematics, Springer, 325–432, doi:10.1007/BFb0096355.

  • Smolarkiewicz, P., 1989: Comments on “A positive definite advection scheme obtained by nonlinear renormalization of the advective fluxes.” Mon. Wea. Rev., 117, 26262632, doi:10.1175/1520-0493(1989)117<2626:COPDAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Spiteri, R. J., and S. J. Ruuth, 2002: A new class of optimal high-order strong-stability-preserving time discretization methods. SIAM J. Numer. Anal., 40, 469491, doi:10.1137/S0036142901389025.

    • Search Google Scholar
    • Export Citation
  • Toro, E. F., 1999: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. 2nd ed. Springer-Verlag, 18 pp.

  • Ullrich, P. A., C. Jablonowski, and B. van Leer, 2010: High-order finite-volume methods for the shallow-water equations on the sphere. J. Comput. Phys., 229, 61046134, doi:10.1016/j.jcp.2010.04.044.

    • Search Google Scholar
    • Export Citation
  • van Leer, B., 1974: Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. J. Comput. Phys., 14, 361370, doi:10.1016/0021-9991(74)90019-9.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., J. B. Drake, J. J. Hack, R. Jakob, and P. N. Swarztrauber, 1992: A standard test set for numerical approximations to the shallow water equations in spherical geometry. J. Comput. Phys., 102, 211224, doi:10.1016/S0021-9991(05)80016-6.

    • Search Google Scholar
    • Export Citation
  • Yang, C., and X. Cai, 2011: Parallel multilevel methods for implicit solution of shallow water equations with nonsmooth topography on the cubed-sphere. J. Comput. Phys., 230, 25232539, doi:10.1016/j.jcp.2010.12.027.

    • Search Google Scholar
    • Export Citation
  • Yang, C., J. Cao, and X. Cai, 2010: A fully implicit domain decomposition algorithm for shallow water equations on the cubed-sphere. SIAM J. Sci. Comput., 32, 418438, doi:10.1137/080727348.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., and C.-W. Shu, 2010: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys., 229, 30913120, doi:10.1016/j.jcp.2009.12.030.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and R. D. Nair, 2012: A nonoscillatory discontinuous Galerkin transport scheme on the cubed sphere. Mon. Wea. Rev., 140, 31063126, doi:10.1175/MWR-D-11-00287.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 251 136 5
PDF Downloads 245 130 5

High-Order Finite-Volume Transport on the Cubed Sphere: Comparison between 1D and 2D Reconstruction Schemes

View More View Less
  • 1 University of Texas at El Paso, El Paso, Texas
  • | 2 National Center for Atmospheric Research, Boulder, Colorado
  • | 3 University of Texas at El Paso, El Paso, Texas
Restricted access

Abstract

This paper presents two finite-volume (FV) schemes for solving linear transport problems on the cubed-sphere grid system. The schemes are based on the central-upwind finite-volume (CUFV) method, which is a class of Godunov-type method for solving hyperbolic conservation laws, and combines the attractive features of the classical upwind and central FV methods. One of the CUFV schemes is based on a dimension-by-dimension approach and employs a fifth-order one-dimensional (1D) Weighted Essentially Nonoscillatory (WENO5) reconstruction method. The other scheme employs a fully two-dimensional (2D) fourth-order accurate reconstruction method. The cubed-sphere grid system imposes several computational challenges due to its patched-domain topology and nonorthogonal curvilinear grid structure. A high-order 1D interpolation procedure combining cubic and quadratic interpolations is developed for the FV schemes to handle the discontinuous edges of the cubed-sphere grid. The WENO5 scheme is compared against the fourth-order Kurganov–Levy (KL) scheme formulated in the CUFV framework. The performance of the schemes is compared using several benchmark problems such as the solid-body rotation and deformational-flow tests, and empirical convergence rates are reported. In addition, a bound-preserving filter combined with an optional positivity-preserving filter is tested for nonsmooth problems. The filtering techniques considered are local, inexpensive, and effective. A fourth-order strong stability preserving explicit Runge–Kutta time-stepping scheme is used for integration. The results show that schemes are competitive to other published FV schemes in the same category.

Corresponding author address: Vinod Kumar, The University of Texas at El Paso, 500 W. University Ave., Engineering Building, Room A-219, El Paso, TX 79902. E-mail: vkumar@utep.edu

Abstract

This paper presents two finite-volume (FV) schemes for solving linear transport problems on the cubed-sphere grid system. The schemes are based on the central-upwind finite-volume (CUFV) method, which is a class of Godunov-type method for solving hyperbolic conservation laws, and combines the attractive features of the classical upwind and central FV methods. One of the CUFV schemes is based on a dimension-by-dimension approach and employs a fifth-order one-dimensional (1D) Weighted Essentially Nonoscillatory (WENO5) reconstruction method. The other scheme employs a fully two-dimensional (2D) fourth-order accurate reconstruction method. The cubed-sphere grid system imposes several computational challenges due to its patched-domain topology and nonorthogonal curvilinear grid structure. A high-order 1D interpolation procedure combining cubic and quadratic interpolations is developed for the FV schemes to handle the discontinuous edges of the cubed-sphere grid. The WENO5 scheme is compared against the fourth-order Kurganov–Levy (KL) scheme formulated in the CUFV framework. The performance of the schemes is compared using several benchmark problems such as the solid-body rotation and deformational-flow tests, and empirical convergence rates are reported. In addition, a bound-preserving filter combined with an optional positivity-preserving filter is tested for nonsmooth problems. The filtering techniques considered are local, inexpensive, and effective. A fourth-order strong stability preserving explicit Runge–Kutta time-stepping scheme is used for integration. The results show that schemes are competitive to other published FV schemes in the same category.

Corresponding author address: Vinod Kumar, The University of Texas at El Paso, 500 W. University Ave., Engineering Building, Room A-219, El Paso, TX 79902. E-mail: vkumar@utep.edu
Save