Mitigating Observation Perturbation Sampling Errors in the Stochastic EnKF

I. Hoteit King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

Search for other papers by I. Hoteit in
Current site
Google Scholar
PubMed
Close
,
D.-T. Pham Centre National de la Recherche Scientifique, Grenoble, France

Search for other papers by D.-T. Pham in
Current site
Google Scholar
PubMed
Close
,
M. E. Gharamti King Abdullah University of Science and Technology, Thuwal, Saudi Arabia, and Nansen Environmental and Remote Sensing Center, Bergen, Norway

Search for other papers by M. E. Gharamti in
Current site
Google Scholar
PubMed
Close
, and
X. Luo International Research Institute of Stavanger, Bergen, Norway

Search for other papers by X. Luo in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The stochastic ensemble Kalman filter (EnKF) updates its ensemble members with observations perturbed with noise sampled from the distribution of the observational errors. This was shown to introduce noise into the system and may become pronounced when the ensemble size is smaller than the rank of the observational error covariance, which is often the case in real oceanic and atmospheric data assimilation applications. This work introduces an efficient serial scheme to mitigate the impact of observations’ perturbations sampling in the analysis step of the EnKF, which should provide more accurate ensemble estimates of the analysis error covariance matrices. The new scheme is simple to implement within the serial EnKF algorithm, requiring only the approximation of the EnKF sample forecast error covariance matrix by a matrix with one rank less. The new EnKF scheme is implemented and tested with the Lorenz-96 model. Results from numerical experiments are conducted to compare its performance with the EnKF and two standard deterministic EnKFs. This study shows that the new scheme enhances the behavior of the EnKF and may lead to better performance than the deterministic EnKFs even when implemented with relatively small ensembles.

Corresponding author address: I. Hoteit, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia. E-mail: ibrahim.hoteit@kasut.edu.sa

Abstract

The stochastic ensemble Kalman filter (EnKF) updates its ensemble members with observations perturbed with noise sampled from the distribution of the observational errors. This was shown to introduce noise into the system and may become pronounced when the ensemble size is smaller than the rank of the observational error covariance, which is often the case in real oceanic and atmospheric data assimilation applications. This work introduces an efficient serial scheme to mitigate the impact of observations’ perturbations sampling in the analysis step of the EnKF, which should provide more accurate ensemble estimates of the analysis error covariance matrices. The new scheme is simple to implement within the serial EnKF algorithm, requiring only the approximation of the EnKF sample forecast error covariance matrix by a matrix with one rank less. The new EnKF scheme is implemented and tested with the Lorenz-96 model. Results from numerical experiments are conducted to compare its performance with the EnKF and two standard deterministic EnKFs. This study shows that the new scheme enhances the behavior of the EnKF and may lead to better performance than the deterministic EnKFs even when implemented with relatively small ensembles.

Corresponding author address: I. Hoteit, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia. E-mail: ibrahim.hoteit@kasut.edu.sa
Save
  • Altaf, U., T. Butler, T. Mayo, C. Dawson, A. Heemink, and I. Hoteit, 2014: A comparison of ensemble Kalman filters for storm surge assimilation. Mon. Wea. Rev.,142, 2899–2914, doi:10.1175/MWR-D-13-00266.1.

  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 2884–2903, doi:10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2003: A local least squares framework for ensemble filtering. Mon. Wea. Rev., 131, 634–642, doi:10.1175/1520-0493(2003)131<0634:ALLSFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2010: A non-Gaussian ensemble filter update for data assimilation. Mon. Wea. Rev., 138, 4186–4198, doi:10.1175/2010MWR3253.1.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420–436, doi:10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bowler, N. E., J. Flowerdew, and S. R. Pring, 2013: Tests of different flavors of EnKF on a simple model. Quart. J. Roy. Meteor. Soc., 139, 1505–1519, doi:10.1002/qj.2055.

    • Search Google Scholar
    • Export Citation
  • Burgers, G., P. J. van Leeuwen, and G. Evensen, 1998: On the analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126, 1719–1724, doi:10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 143–10 162, doi:10.1029/94JC00572.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2003: The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn., 53, 343–367, doi:10.1007/s10236-003-0036-9.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2009: The ensemble Kalman filter for combined state and parameter estimation. IEEE Control Syst., 29, 83–104, doi:10.1109/MCS.2009.932223.

    • Search Google Scholar
    • Export Citation
  • Frei, M., and H. R. Kunsch, 2013: Mixture ensemble Kalman filters. Comput. Stat. Data Anal., 58, 127–138, doi:10.1016/j.csda.2011.04.013.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723–757, doi:10.1002/qj.49712555417.

    • Search Google Scholar
    • Export Citation
  • Golub, G., and C. F. Van Loan, Eds., 1996: Matrix Computation. 3rd ed. Johns Hopkins University Press, 728 pp.

  • Hamill, T. M., J. S. Whitaker, and C. Snyder, 2001: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev., 129, 2776–2790, doi:10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hestenes, M. R., and W. Karush, 1951: A method of gradients for the calculation of the characteristic roots and vectors of a real symmetric matrix. J. Res. Natl. Bur. Stand., 47, 45–61.

    • Search Google Scholar
    • Export Citation
  • Hoteit, I., D. T. Pham, and J. Blum, 2002: A simplified reduced order Kalman filtering and application to altimetric data assimilation in tropical Pacific. J. Mar. Syst., 36, 101–127, doi:10.1016/S0924-7963(02)00129-X.

    • Search Google Scholar
    • Export Citation
  • Hoteit, I., G. Korres, and G. Triantafyllou, 2005: Comparison of extended and ensemble based Kalman filters with low and high-resolution primitive equations ocean models. Nonlinear Processes Geophys., 12, 755–765, doi:10.5194/npg-12-755-2005.

    • Search Google Scholar
    • Export Citation
  • Hoteit, I., X. Luo, and D. T. Pham, 2012: Particle Kalman filtering: A nonlinear Bayesian framework for ensemble Kalman filters. Mon. Wea. Rev., 140, 528–542, doi:10.1175/2011MWR3640.1.

    • Search Google Scholar
    • Export Citation
  • Kalman, R., 1960: A new approach to linear filtering and prediction problems. J. Fluids Eng., 82, 35–45, doi:10.1115/1.3662552.

  • Karush, W., 1951: An iterative method for finding characteristic vectors of a symmetric matrix. Pac. J. Math., 1, 233–248, doi:10.2140/pjm.1951.1.233.

    • Search Google Scholar
    • Export Citation
  • Korres, G., I. Hoteit, and G. Triantafyllou, 2007: Data assimilation into a Princeton Ocean Model of the Mediterranean Sea using advanced Kalman filters. J. Mar. Syst., 65, 84–104, doi:10.1016/j.jmarsys.2006.09.005.

    • Search Google Scholar
    • Export Citation
  • Lawson, W., and J. Hansen, 2004: Implications of stochastic and deterministic filters as ensemble-based data assimilation methods in varying regimes of error growth. Mon. Wea. Rev., 132, 1966–1981, doi:10.1175/1520-0493(2004)132<1966:IOSADF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lei, J., P. Bickel, and C. Snyder, 2010: Comparison of ensemble Kalman filters under non-Gaussianity. Mon. Wea. Rev., 138, 1293–1306, doi:10.1175/2009MWR3133.1.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., and K. A. Emanuel, 1998: Optimal sites for supplementary weather observations: Simulation with a small model. J. Atmos. Sci., 55, 399–414, doi:10.1175/1520-0469(1998)055<0399:OSFSWO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Luo, X., and I. M. Moroz, 2009: Ensemble Kalman filter with the unscented transform. Physica D, 238, 549–562, doi:10.1016/j.physd.2008.12.003.

    • Search Google Scholar
    • Export Citation
  • Maybeck, P., 1979: Square root filtering. Stochastic Models, Estimation, and Control, Vol. 1, Academic Press, 368–410.

  • Nerger, L., W. Hiller, and J. Schroter, 2005: A comparison of error subspace Kalman filters. Tellus, 57A, 715–735, doi:10.1111/j.1600-0870.2005.00141.x.

    • Search Google Scholar
    • Export Citation
  • Pham, D. T., 2001: Stochastic methods for sequential data assimilation in strongly nonlinear systems. Mon. Wea. Rev., 129, 1194–1207, doi:10.1175/1520-0493(2001)129<1194:SMFSDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sakov, P., and P. Oke, 2008: A deterministic formulation of the ensemble Kalman filter: An alternative to ensemble square root filters. Tellus, 60A, 361–371, doi:10.1111/j.1600-0870.2007.00299.x.

    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., J. L. Anderson, C. H. Bishop, T. M. Hamill, and J. S. Whitaker, 2003: Ensemble square root filters. Mon. Wea. Rev., 131, 1485–1490, doi:10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wan, E., and R. van der Merwe, 2000: The unscented Kalman filter for nonlinear estimation. Proc. IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symp., Lake Louise, Alberta, Canada, IEEE, 153–158, doi:10.1109/ASSPCC.2000.882463.

  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 1913–1924, doi:10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2312 293 31
PDF Downloads 585 137 1