• Atlas, D., R. C. Srivastava, and R. S. Sekhon, 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys., 11, 135, doi:10.1029/RG011i001p00001.

    • Search Google Scholar
    • Export Citation
  • Bader, M. J., and W. T. Roach, 1977: Orographic rainfall in warm sectors of depressions. Quart. J. Roy. Meteor. Soc., 103, 269280, doi:10.1002/qj.49710343605.

    • Search Google Scholar
    • Export Citation
  • Barstad, I., and R. B. Smith, 2005: Evaluation of an orographic precipitation model. J. Hydrometeor., 6, 8599, doi:10.1175/JHM-404.1.

    • Search Google Scholar
    • Export Citation
  • Battan, L. J., 1973: Radar Observation of the Atmosphere. University of Chicago Press, 324 pp.

  • Baumgartner, A., and E. Reichel, 1975: The World Water Balance: Mean Annual Global, Continental and Maritime Precipitation and Run-Off. Elsevier Scientific Publishers, 179 pp.

  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

    • Search Google Scholar
    • Export Citation
  • Brown, R. A., 1980: Longitudinal instabilities and secondary flows in the planetary boundary layer: A review. Rev. Geophys., 18, 683697, doi:10.1029/RG018i003p00683.

    • Search Google Scholar
    • Export Citation
  • Campbell, L. S., and W. J. Steenburgh, 2014: Finescale orographic pecipitation variability and gap-filling radar potential in Little Cottonwood Canyon, Utah. Wea. Forecasting, 29, 912935, doi:10.1175/WAF-D-13-00129.1.

    • Search Google Scholar
    • Export Citation
  • Cannon, D. J., D. J. Kirshbaum, and S. L. Gray, 2012: Under what conditions does embedded convection enhance orographic precipitation? Quart. J. Roy. Meteor. Soc., 138, 391406, doi:10.1002/qj.926.

    • Search Google Scholar
    • Export Citation
  • Chapman, D., and K. A. Browning, 1997: Radar observations of wind-shear splitting within evolving atmospheric Kelvin–Helmholtz billows. Quart. J. Roy. Meteor. Soc., 123, 14331439, doi:10.1002/qj.49712354114.

    • Search Google Scholar
    • Export Citation
  • Chapman, D., and K. A. Browning, 1999: Release of potential shearing instability in warm frontal zones. Quart. J. Roy. Meteor. Soc., 125, 22652289, doi:10.1002/qj.49712555815.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., 2004: Sensitivity of orographic precipitation to changing ambient conditions and terrain geometries: An idealized modeling perspective. J. Atmos. Sci., 61, 588606, doi:10.1175/1520-0469(2004)061<0588:SOOPTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., 2008: Two-dimensional idealized simulations of the impact of multiple windward ridges on orographic precipitation. J. Atmos. Sci., 65, 509523, doi:10.1175/2007JAS2305.1.

    • Search Google Scholar
    • Export Citation
  • Cosma, S., E. Richard, and F. Miniscloux, 2002: The role of small-scale orographic features in the spatial distribution of precipitation. Quart. J. Roy. Meteor. Soc., 128, 7592, doi:10.1256/00359000260498798.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnic, 1993: Doppler Radar and Weather Observations. 2nd ed. Academic Press, 562 pp.

  • Durran, D. R., and J. B. Klemp, 1982: On the effects of moisture on the Brunt–Väisälä frequency. J. Atmos. Sci., 39, 21522158, doi:10.1175/1520-0469(1982)039<2152:OTEOMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Farber, R. J., 1972: A study of cloud particles in synoptic storms over the Pacific Northwest. M. S. thesis, Dept. of Atmospheric Sciences, University of Washington, 649 pp.

  • Garvert, M. F., B. Smull, and C. Mass, 2007: Multiscale mountain waves influencing a major orographic precipitation event. J. Atmos. Sci., 64, 711737, doi:10.1175/JAS3876.1.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., 1975: The nature of winter clouds and precipitation in the Cascade Mountains and their modification by artificial seeding. Part I: Natural conditions. J. Appl. Meteor., 14, 783804, doi:10.1175/1520-0450(1975)014<0783:TNOWCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., R. C. Easter, and A. B. Fraser, 1973: A theoretical study of the flow of air and fallout of solid precipitation over mountainous terrain. Part II: Microphysics. J. Atmos. Sci., 30, 813823, doi:10.1175/1520-0469(1973)030<0813:ATSOTF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., R. A. Houze Jr., and T. J. Matejka, 1975: The dynamical and microphysical structure of an occluded frontal system and its modification by orography. J. Atmos. Sci., 32, 15421562, doi:10.1175/1520-0469(1975)032<1542:TDAMSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houser, J. L., and H. B. Bluestein, 2011: Polarimetric Doppler radar observations of Kelvin–Helmholtz waves in a winter storm. J. Atmos. Sci., 68, 16761702, doi:10.1175/2011JAS3566.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2012: Orographic effects on precipitating clouds. Rev. Geophys.,50, RG1001, doi:10.1029/2011RG000365.

  • Houze, R. A., Jr., and S. Medina, 2005: Turbulence as a mechanism for orographic precipitation enhancement. J. Atmos. Sci., 62, 35993623, doi:10.1175/JAS3555.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, Q., 2003: Moist dynamics and orographic precipitation. Tellus, 55A, 301316, doi:10.1034/j.1600-0870.2003.00025.x.

  • Jiang, Q., and R. B. Smith, 2003: Cloud timescales and orographic precipitation. J. Atmos. Sci., 60, 15431559, doi:10.1175/2995.1.

  • Kingsmill, D. E., P. J. Neiman, F. M. Ralph, and A. B. White, 2006: Synoptic and topographic variability of northern California precipitation characteristics in landfalling winter storms observed during CALJET. Mon. Wea. Rev., 134, 20722094, doi:10.1175/MWR3166.1.

    • Search Google Scholar
    • Export Citation
  • Kingsmill, D. E., P. J. Neiman, B. J. Moore, M. Hughes, S. E. Yuter, and F. M. Ralph, 2013: Kinematic and thermodynamic structures of Sierra barrier jets and overrunning atmospheric rivers during a landfalling winter storm in northern California. Mon. Wea. Rev., 141, 20152036, doi:10.1175/MWR-D-12-00277.1.

    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., and D. R. Durran, 2005: Atmospheric factors governing banded orographic convection. J. Atmos. Sci., 62, 37583774, doi:10.1175/JAS3568.1.

    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., G. H. Bryan, R. Rotunno, and D. R. Durran, 2007: The triggering of orographic rainbands by small-scale topography. J. Atmos. Sci., 64, 15301549, doi:10.1175/JAS3924.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., H. D. Reeves, S.-Y. Chen, and S. Chiao, 2005: Formation mechanisms for convection over the Ligurian Sea during MAP IOP-8. Mon. Wea. Rev., 133, 22272245, doi:10.1175/MWR2970.1.

    • Search Google Scholar
    • Export Citation
  • Lundquist, J. D., J. R. Minder, P. J. Neiman, and E. Sukovich, 2010: Relationships between barrier jet heights, orographic precipitation gradients, and streamflow in the northern Sierra Nevada. J. Hydrometeor., 11, 11411156, doi:10.1175/2010JHM1264.1.

    • Search Google Scholar
    • Export Citation
  • Marwitz, J. D., 1987: Deep orographic storms over the Sierra Nevada. Part I: Thermodynamic and kinematic structure. J. Atmos. Sci., 44, 159173, doi:10.1175/1520-0469(1987)044<0159:DOSOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2010: Evaluating polarimetric X-band radar rainfall estimators during HMT. J. Atmos. Oceanic Technol., 27, 122134, doi:10.1175/2009JTECHA1318.1.

    • Search Google Scholar
    • Export Citation
  • Medina, S., B. F. Smull, R. A. Houze Jr., and M. Steiner, 2005: Cross-barrier flow during orographic precipitation events: Results from MAP and IMPROVE. J. Atmos. Sci., 62, 35803598, doi:10.1175/JAS3554.1.

    • Search Google Scholar
    • Export Citation
  • Medina, S., E. Sukovich, and R. A. Houze Jr., 2007: Vertical structures of precipitation in cyclones crossing the Oregon Cascades. Mon. Wea. Rev., 135, 35653586, doi:10.1175/MWR3470.1.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Miles, J. W., and L. N. Howard, 1964: Note on a heterogeneous shear flow. J. Fluid Mech., 20, 331336, doi:10.1017/S0022112064001252.

  • Miniscloux, F., J. D. Creutin, and S. Anquetin, 2001: Geostatistical analysis of orographic rainbands. J. Appl. Meteor., 40, 18351854, doi:10.1175/1520-0450(2001)040<1835:GAOOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., E. M. Sukovich, F. M. Ralph, and M. Hughes, 2010: A seven-year wind profiler–based climatology of the windward barrier jet along California’s northern Sierra Nevada. Mon. Wea. Rev., 138, 12061233, doi:10.1175/2009MWR3170.1.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., M. Hughes, B. J. Moore, F. M. Ralph, and E. M. Sukovich, 2013: Sierra barrier jets, atmospheric rivers, and precipitation characteristics in northern California: A composite perspective based on a network of wind profilers. Mon. Wea. Rev., 141, 42114233, doi:10.1175/MWR-D-13-00112.1.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2005: Improving short-term (0–48 h) cool-season quantitative precipitation forecasting: Recommendations from a USWRP workshop. Bull. Amer. Meteor. Soc., 86, 16191632, doi:10.1175/BAMS-86-11-1619.

    • Search Google Scholar
    • Export Citation
  • Reeves, H. D., Y.-L. Lin, and R. Rotunno, 2008: Dynamic forcing and mesoscale variability of heavy precipitation events over the Sierra Nevada Mountains. Mon. Wea. Rev., 136, 6277, doi:10.1175/2007MWR2164.1.

    • Search Google Scholar
    • Export Citation
  • Roe, G. H., and M. B. Baker, 2006: Microphysical and geometrical controls on the pattern of orographic precipitation. J. Atmos. Sci., 63, 861880, doi:10.1175/JAS3619.1.

    • Search Google Scholar
    • Export Citation
  • Smith, B. L., S. E. Yuter, P. J. Neiman, and D. E. Kingsmill, 2010: Water vapor fluxes and orographic precipitation over northern California associated with a landfalling atmospheric river. Mon. Wea. Rev., 138, 74100, doi:10.1175/2009MWR2939.1.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1979: The influence of mountains on the atmosphere. Advances in Geophysics, Vol. 21, Academic Press, 87230, doi:10.1016/S0065-2687(08)60262-9.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 2003: A linear upslope-time-delay model for orographic precipitation. J. Hydrol., 282, 29, doi:10.1016/S0022-1694(03)00248-8.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., and I. Barstad, 2004: A linear theory of orographic precipitation. J. Atmos. Sci., 61, 13771391, doi:10.1175/1520-0469(2004)061<1377:ALTOOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., Q. Jiang, M. G. Fearon, P. Tabary, M. Dorninger, J. D. Doyle, and R. Benoit, 2003: Orographic precipitation and air mass transformation: An Alpine example. Quart. J. Roy. Meteor. Soc., 129, 433454, doi:10.1256/qj.01.212.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., I. Barstad, and L. Bonneau, 2005: Orographic precipitation and Oregon’s climate transition. J. Atmos. Sci., 62, 177191, doi:10.1175/JAS-3376.1.

    • Search Google Scholar
    • Export Citation
  • Stoelinga, M. T., and Coauthors, 2003: Improvement of Microphysical Parameterizations through Observational Verification Experiment. Bull. Amer. Meteor. Soc., 84, 18071826, doi:10.1175/BAMS-84-12-1807.

    • Search Google Scholar
    • Export Citation
  • Turner, J. S., 1973: Buoyancy Effects in Fluids. Cambridge University Press, 368 pp.

  • White, A. B., J. R. Jordan, B. E. Martner, F. M. Ralph, and B. W. Bartram, 2000: Extending the dynamic range of an S-Band radar for cloud and precipitation studies. J. Atmos. Oceanic Technol., 17, 12261234, doi:10.1175/1520-0426(2000)017<1226:ETDROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • White, A. B., D. J. Gottas, E. T. Strem, F. M. Ralph, and P. J. Neiman, 2002: An automated brightband height detection algorithm for use with Doppler radar spectral moments. J. Atmos. Oceanic Technol., 19, 687697, doi:10.1175/1520-0426(2002)019<0687:AABHDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • White, A. B., P. J. Neiman, F. M. Ralph, D. E. Kingsmill, and P. O. G. Persson, 2003: Coastal orographic rainfall processes observed by radar during the California land-falling jets experiment. J. Hydrometeor., 4, 264282, doi:10.1175/1525-7541(2003)4<264:CORPOB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Williams, C. R., A. B. White, K. S. Gage, and F. M. Ralph, 2007: Vertical structure of precipitation and related microphysics observed by NOAA profiles and TRMM during NAME 2004. J. Climate, 20, 16931712, doi:10.1175/JCLI4102.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735, doi:10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 127 74 7
PDF Downloads 73 41 4

Small-Scale Precipitation Elements in Midlatitude Cyclones Crossing the California Sierra Nevada

View More View Less
  • 1 University of Washington, Seattle, Washington
Restricted access

Abstract

Radar data in some frontal systems passing over the Sierra Nevada of California show large variance on scales of ~10 km. The most prominent features are a few kilometers in scale and are similar to small-scale precipitation cells embedded in fronts seen over other mountain ranges. Other frontal systems crossing the Sierras are characterized by more uniform air motions. Updrafts in large-variance storms have characteristics of shear-induced turbulence, although buoyant instability may also contribute. Large-variance storms occur under stronger upstream winds and vertically integrated cross- and along-barrier moisture fluxes. Rain gauges indicate that large-variance storms have precipitation greater than smaller-variance storms. Stronger horizontal moisture fluxes may provide greater mean upslope condensation rates; however, it is hypothesized that accelerated microphysical processes are needed to most efficiently convert the condensate into precipitation that falls out on the lower slopes before being carried downstream. Radar data indicate that the turbulence embodied in the cellular motions of the large-variance cases is consistent with microphysical enhancement resulting from updraft elements producing pockets of liquid water conducive to riming and coalescence. In addition, radar spectrum-width data show that the cells contain strong subcell-scale turbulence conducive to particle collisions and aggregation. Polarimetric radar data just below the 0°C level show large raindrops in the cells, consistent with aggregation occurring in cells just above the melting layer. It is hypothesized that such enhanced microphysical processes in large-variance cases hasten the growth and fallout in the regions of maximum condensation over the windward slopes.

Corresponding author address: Robert A. Houze Jr., University of Washington, 604 ATG Building, Seattle, WA 98195-1640. E-mail: houze@uw.edu

Abstract

Radar data in some frontal systems passing over the Sierra Nevada of California show large variance on scales of ~10 km. The most prominent features are a few kilometers in scale and are similar to small-scale precipitation cells embedded in fronts seen over other mountain ranges. Other frontal systems crossing the Sierras are characterized by more uniform air motions. Updrafts in large-variance storms have characteristics of shear-induced turbulence, although buoyant instability may also contribute. Large-variance storms occur under stronger upstream winds and vertically integrated cross- and along-barrier moisture fluxes. Rain gauges indicate that large-variance storms have precipitation greater than smaller-variance storms. Stronger horizontal moisture fluxes may provide greater mean upslope condensation rates; however, it is hypothesized that accelerated microphysical processes are needed to most efficiently convert the condensate into precipitation that falls out on the lower slopes before being carried downstream. Radar data indicate that the turbulence embodied in the cellular motions of the large-variance cases is consistent with microphysical enhancement resulting from updraft elements producing pockets of liquid water conducive to riming and coalescence. In addition, radar spectrum-width data show that the cells contain strong subcell-scale turbulence conducive to particle collisions and aggregation. Polarimetric radar data just below the 0°C level show large raindrops in the cells, consistent with aggregation occurring in cells just above the melting layer. It is hypothesized that such enhanced microphysical processes in large-variance cases hasten the growth and fallout in the regions of maximum condensation over the windward slopes.

Corresponding author address: Robert A. Houze Jr., University of Washington, 604 ATG Building, Seattle, WA 98195-1640. E-mail: houze@uw.edu
Save