• Bartels, D. L., and R. A. Maddox, 1991: Midlevel cyclonic vortices generated by mesoscale convective systems. Mon. Wea. Rev., 119, 104118, doi:10.1175/1520-0493(1991)119<0104:MCVGBM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bell, M. M., and M. T. Montgomery, 2010: Sheared deep vortical convection in pre-depression Hagupit during TCS08. Geophys. Res. Lett., 37, L06802, doi:10.1029/2009GL042313.

    • Search Google Scholar
    • Export Citation
  • Bell, M. M., M. T. Montgomery, and K. A. Emanuel, 2012: Air–sea enthalpy and momentum exchange at major hurricane wind speeds observed during CBLAST. J. Atmos. Sci., 69, 31973222, doi:10.1175/JAS-D-11-0276.1.

    • Search Google Scholar
    • Export Citation
  • Bell, M. M., W.-C. Lee, C. A. Wolff, and H. Cai, 2013: A Solo-based automated quality control algorithm for airborne tail Doppler radar data. J. Appl. Meteor. Climatol., 52, 25092528, doi:10.1175/JAMC-D-12-0283.1.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., and W. M. Frank, 1993: A numerical study of the genesis of extratropical convective mesovortices. Part I: Evolution and dynamics. J. Atmos. Sci., 50, 24012426, doi:10.1175/1520-0469(1993)050<2401:ANSOTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and D. A. Ahijevych, 2012: Mesoscale structural evolution of three tropical weather systems observed during PREDICT. J. Atmos. Sci., 69, 12841305, doi:10.1175/JAS-D-11-0225.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and D. A. Ahijevych, 2013: Thermodynamic environments of deep convection in Atlantic tropical disturbances. J. Atmos. Sci., 70, 19121928, doi:10.1175/JAS-D-12-0278.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., C. Snyder, and A. C. Didlake, 2008: A vortex-based perspective of eastern Pacific tropical cyclone formation. Mon. Wea. Rev., 136, 24612477, doi:10.1175/2007MWR2317.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., S. C. Jones, D. Anwender, J. Badey, and L. Scheck, 2013: Mesoscale cyclogenesis over the western North Pacific Ocean during TPARC. Tellus, 65A, 18621, doi:10.3402/tellusa.v65i0.18621.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., M. T. Montgomery, and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys., 9, 55875646, doi:10.5194/acp-9-5587-2009.

    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., and P. A. Harr, 2008: Tropical cyclone structure (TCS08) field experiement science basis, observational platforms, and strategy. Asia-Pac. J. Atmos. Sci., 44, 209231.

    • Search Google Scholar
    • Export Citation
  • Foerster, A. M., M. M. Bell, P. A. Harr, and S. C. Jones, 2014: Observations of the eyewall structure of Typhoon Sinlaku (2008) during the transformation stage of extratropical transition. Mon. Wea. Rev., 142, 33723392, doi:10.1175/MWR-D-13-00313.1.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 1999: Effects of environmental flow upon tropical cyclone structure. Mon. Wea. Rev., 127, 20442061, doi:10.1175/1520-0493(1999)127<2044:EOEFUT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fu, B., M. S. Peng, T. Li, and D. E. Stevens, 2012: Developing versus nondeveloping disturbances for tropical cyclone formation. Part II: Western North Pacific. Mon. Wea. Rev., 140, 10671080, doi:10.1175/2011MWR3618.1.

    • Search Google Scholar
    • Export Citation
  • Gjorgjievska, S., and D. J. Raymond, 2014: Interaction between dynamics and thermodynamics during tropical cyclogenesis. Atmos. Chem. Phys., 14, 30653082, doi:10.5194/acp-14-3065-2014.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1975: Tropical cyclone genesis. Dept. of Atmospheric Sciences Paper 234, Colorado State University, Ft. Collins, CO, 121 pp.

  • Gray, W. M., 1982: Tropical cyclone genesis and intensification. Topics in Atmospheric and Oceanographic Sciences: Intense Atmospheric Vortices, L. Bengtsson and J. Lighthill, Eds., Springer-Verlag, 3–20.

  • Gray, W. M., 1998: The formation of tropical cyclones. Meteor. Atmos. Phys., 67, 3769, doi:10.1007/BF01277501.

  • Hildebrand, P. H., and Coauthors, 1996: The ELDORA/ASTRAIA airborne Doppler weather radar: High-resolution observations from TOGA COARE. Bull. Amer. Meteor. Soc., 77, 213232, doi:10.1175/1520-0477(1996)077<0213:TEADWR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hock, T. F., and J. L. Franklin, 1999: The NCAR GPS dropwindsonde. Bull. Amer. Meteor. Soc., 80, 407420, doi:10.1175/1520-0477(1999)080<0407:TNGD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, doi:10.1029/2004RG000150.

  • Jones, S. C., 1995: The evolution of vortices in vertical shear. I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121, 821851, doi:10.1002/qj.49712152406.

    • Search Google Scholar
    • Export Citation
  • Komaromi, W. A., 2013: An investigation of composite dropsonde profiles for developing and nondeveloping tropical waves during the 2010 PREDICT field campaign. J. Atmos. Sci., 70, 542558, doi:10.1175/JAS-D-12-052.1.

    • Search Google Scholar
    • Export Citation
  • Lee, C. S., 1989: Observational analysis of tropical cyclogenesis in the western North Pacific. Part I: Structural evolution of cloud clusters. J. Atmos. Sci., 46, 25802598, doi:10.1175/1520-0469(1989)046<2580:OAOTCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, W. C., M. Bell, C. Wolff, E. Loew, and M. Donovan, 2009: THORPEX Pacific Asian Regional Campaign (TPARC) and Tropical Cyclone Structure 2008 (TCS08) ELDORA data quality report. NCAR/Earth Observing Laboratory, 9 pp. [Available online at http://data.eol.ucar.edu/datafile/nph-get/110.084/ELDORA_TPARC_readme.pdf.]

  • Liu, C., E. J. Zipser, and S. W. Nesbitt, 2007: Global distribution of tropical deep convection: Different perspectives from TRMM infrared and radar data. J. Climate, 20, 489503, doi:10.1175/JCLI4023.1.

    • Search Google Scholar
    • Export Citation
  • Lussier, L. L., III, M. T. Montgomery, and M. M. Bell, 2014: The genesis of Typhoon Nuri as observed during the Tropical Cyclone Structure 2008 (TCS08) field experiment—Part 3: Dynamics of low-level spin-up during the genesis. Atmos. Chem. Phys., 14, 87958812, doi:10.5194/acp-14-8795-2014.

    • Search Google Scholar
    • Export Citation
  • McBride, J. L., 1981: Observational analysis of tropical cyclone formation. Part I: Basic description of data sets. J. Atmos. Sci., 38, 11171131, doi:10.1175/1520-0469(1981)038<1117:OAOTCF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McBride, J. L., and R. Zehr, 1981: Observational analysis of tropical cyclone formation. Part II: Comparison of non-developing versus developing systems. J. Atmos. Sci., 38, 11321151, doi:10.1175/1520-0469(1981)038<1132:OAOTCF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., J. Frank, and D. Vollaro, 2013: Convective bursts, downdraft cooling, and boundary layer recovery in a sheared tropical storm. Mon. Wea. Rev., 141, 10481060, doi:10.1175/MWR-D-12-00135.1.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., L. L. Lussier III, R. W. Moore, and Z. Wang, 2010: The genesis of Typhoon Nuri as observed during the tropical cyclone structure 2008 (TCS-08) field experiment—Part 1: The role of the easterly wave critical layer. Atmos. Chem. Phys., 10, 98799900, doi:10.5194/acp-10-9879-2010.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and Coauthors, 2012: The Pre-Depression Investigation of Cloud-Systems in the Tropics (PREDICT) experiment: Scientific basis, new analysis tools, and some first results. Bull. Amer. Meteor. Soc., 93, 153172, doi:10.1175/BAMS-D-11-00046.1.

    • Search Google Scholar
    • Export Citation
  • Park, M.-S., and R. L. Elsberry, 2013: Latent heating and cooling rates in developing and nondeveloping tropical disturbances during TCS-08: TRMM PR versus ELDORA retrievals. J. Atmos. Sci., 70, 1535, doi:10.1175/JAS-D-12-083.1.

    • Search Google Scholar
    • Export Citation
  • Park, M.-S., C.-H. Ho, J. Kim, and R. Elsberry, 2011: Diurnal circulations and their multi-scale interaction leading to rainfall over the South China Sea upstream of the Philippines during intraseasonal monsoon westerly wind bursts. Climate Dyn., 37, 14831499, doi:10.1007/s00382-010-0922-z.

    • Search Google Scholar
    • Export Citation
  • Penny, A. B., 2013: Observations and high-resolution numerical simulations of a non-developing tropical disturbance in the western North Pacific. Ph.D. dissertation, Naval Postgraduate School, Monterey, CA, 287 pp. [Available online at http://hdl.handle.net/10945/37691.]

  • Raymond, D. J., and H. Jiang, 1990: A theory for long-lived mesoscale convective systems. J. Atmos. Sci., 47, 30673077, doi:10.1175/1520-0469(1990)047<3067:ATFLLM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and S. L. Sessions, 2007: Evolution of convection during tropical cyclogenesis. Geophys. Res. Lett., 34, L06811, doi:10.1029/2006GL028607.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and C. López Carrillo, 2011: The vorticity budget of developing Typhoon Nuri (2008). Atmos. Chem. Phys., 11, 147163, doi:10.5194/acp-11-147-2011.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., S. L. Sessions, and C. López Carrillo, 2011: Thermodynamics of tropical cyclogenesis in the northwest Pacific. J. Geophys. Res., 116, D18101, doi:10.1029/2011JD015624.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., E. Ritchie, G. J. Holland, J. Halverson, and S. Stewart, 1997: Mesoscale interactions in tropical cyclone genesis. Mon. Wea. Rev., 125, 26432661, doi:10.1175/1520-0493(1997)125<2643:MIITCG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and M. T. Montgomery, 2012: Observations of the convective environment in developing and non-developing tropical disturbances. Quart. J. Roy. Meteor. Soc., 138, 1721–1739, doi:10.1002/qj.1910.

    • Search Google Scholar
    • Export Citation
  • Testud, J., P. H. Hildebrand, and W.-C. Lee, 1995: A procedure to correct airborne Doppler radar data for navigation errors using the echo returned from the earth’s surface. J. Atmos. Oceanic Technol., 12, 800820, doi:10.1175/1520-0426(1995)012<0800:APTCAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tory, K. J., M. T. Montgomery, and N. E. Davidson, 2006: Prediction and diagnosis of tropical cyclone formation in an NWP system. Part I: The critical role of vortex enhancement in deep convection. J. Atmos. Sci., 63, 30773090, doi:10.1175/JAS3764.1.

    • Search Google Scholar
    • Export Citation
  • Tory, K. J., R. A. Dare, N. E. Davidson, J. L. McBride, and S. S. Chand, 2013: The importance of low-deformation vorticity in tropical cyclone formation. Atmos. Chem. Phys., 13, 21152132, doi:10.5194/acp-13-2115-2013.

    • Search Google Scholar
    • Export Citation
  • Uhlhorn, E. W., P. G. Black, J. L. Franklin, M. Goodberlet, J. Carswell, and A. S. Goldstein, 2007: Hurricane surface wind measurements from an operational stepped frequency microwave radiometer. Mon. Wea. Rev., 135, 30703085, doi:10.1175/MWR3454.1.

    • Search Google Scholar
    • Export Citation
  • Vigh, J. L., and W. H. Schubert, 2009: Rapid development of the tropical cyclone warm core. J. Atmos. Sci., 66, 33353350, doi:10.1175/2009JAS3092.1.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., W.-C. Lee, H. B. Bluestein, C.-H. Liu, and P. H. Hildebrand, 1996: ELDORA observations during VORTEX 95. Bull. Amer. Meteor. Soc., 77, 14651481, doi:10.1175/1520-0477(1996)077<1465:EODV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and Coauthors, 2012: The “year” of tropical convection (May 2008–April 2010): Climate variability and weather highlights. Bull. Amer. Meteor. Soc., 93, 11891218, doi:10.1175/2011BAMS3095.1.

    • Search Google Scholar
    • Export Citation
  • Yang, S., and E. A. Smith, 2006: Mechanisms for diurnal variability of global tropical rainfall observed from TRMM. J. Climate, 19, 51905226, doi:10.1175/JCLI3883.1.

    • Search Google Scholar
    • Export Citation
  • Young, K., J. Wang, and D. Lauritsen, 2009a: THORPEX Pacific Asian Regional Campaign (TPARC) 2008 quality controlled Air Force C-130 dropsonde data set. NCAR/Earth Observing Laboratory, 9 pp. [Available online at http://data.eol.ucar.edu/datafile/nph-get/110.085/readme.TPARC2008-C130.dropsondes.doc.]

  • Young, K., J. Wang, and D. Lauritsen, 2009b: THORPEX Asian Pacific Regional Campaign (TPARC) 2008 quality controlled NRL-P3 dropsonde data set. NCAR/Earth Observing Laboratory, 9 pp. [Available online at http://data.eol.ucar.edu/datafile/nph-get/110.078/readme.TPARC2008-P3.dropsondes.doc.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 76 30 3
PDF Downloads 46 14 1

Observations of a Nondeveloping Tropical Disturbance in the Western North Pacific during TCS-08 (2008)

View More View Less
  • 1 Naval Postgraduate School, Monterey, California
  • | 2 University of Hawai‘i at Mānoa, Honolulu, Hawaii
Restricted access

Abstract

Large uncertainty still remains in determining whether a tropical cloud cluster will develop into a tropical cyclone. During The Observing System Research and Predictability Experiment (THORPEX) Pacific Asian Regional Campaign (T-PARC)/Tropical Cyclone Structure-2008 (TCS-08) field experiment, over 50 tropical cloud clusters were monitored for development, but only 4 developed into a tropical cyclone. One nondeveloping tropical disturbance (TCS025) was closely observed for potential formation during five aircraft research missions, which provided an unprecedented set of observations pertaining to the large-scale and convective environments of a nondeveloping system.

The TCS025 disturbance was comprised of episodic convection that occurred in relation to the diurnal cycle along the eastern extent of a broad low-level trough. The upper-level environment was dominated by two cyclonic cells in the tropical upper-tropospheric trough (TUTT) north of the low-level trough in which the TCS025 circulation was embedded. An in-depth examination of in situ observations revealed that the nondeveloping circulation was asymmetric and vertically misaligned, which led to larger system-relative flow on the mesoscale. Persistent environmental vertical wind shear and horizontal shearing deformation near the circulation kept the system from becoming better organized and appears to have allowed low equivalent potential temperature () air originating from one of the TUTT cells to the north (upshear) to impact the thermodynamic environment of TCS025. This in turn weakened subsequent convection that might otherwise have improved alignment and contributed to the transition of TCS025 to a tropical cyclone.

Corresponding author address: Andrew B. Penny, Department of Meteorology, Naval Postgraduate School, 589 Dyer Rd., Root Hall, Room 254, Monterey, CA 93943-5114. E-mail: abpenny@nps.edu

Abstract

Large uncertainty still remains in determining whether a tropical cloud cluster will develop into a tropical cyclone. During The Observing System Research and Predictability Experiment (THORPEX) Pacific Asian Regional Campaign (T-PARC)/Tropical Cyclone Structure-2008 (TCS-08) field experiment, over 50 tropical cloud clusters were monitored for development, but only 4 developed into a tropical cyclone. One nondeveloping tropical disturbance (TCS025) was closely observed for potential formation during five aircraft research missions, which provided an unprecedented set of observations pertaining to the large-scale and convective environments of a nondeveloping system.

The TCS025 disturbance was comprised of episodic convection that occurred in relation to the diurnal cycle along the eastern extent of a broad low-level trough. The upper-level environment was dominated by two cyclonic cells in the tropical upper-tropospheric trough (TUTT) north of the low-level trough in which the TCS025 circulation was embedded. An in-depth examination of in situ observations revealed that the nondeveloping circulation was asymmetric and vertically misaligned, which led to larger system-relative flow on the mesoscale. Persistent environmental vertical wind shear and horizontal shearing deformation near the circulation kept the system from becoming better organized and appears to have allowed low equivalent potential temperature () air originating from one of the TUTT cells to the north (upshear) to impact the thermodynamic environment of TCS025. This in turn weakened subsequent convection that might otherwise have improved alignment and contributed to the transition of TCS025 to a tropical cyclone.

Corresponding author address: Andrew B. Penny, Department of Meteorology, Naval Postgraduate School, 589 Dyer Rd., Root Hall, Room 254, Monterey, CA 93943-5114. E-mail: abpenny@nps.edu
Save