Quadrature Methods for the Calculation of Subgrid Microphysics Moments

K. Chowdhary Sandia National Laboratories, Livermore, California

Search for other papers by K. Chowdhary in
Current site
Google Scholar
PubMed
Close
,
M. Salloum Sandia National Laboratories, Livermore, California

Search for other papers by M. Salloum in
Current site
Google Scholar
PubMed
Close
,
B. Debusschere Sandia National Laboratories, Livermore, California

Search for other papers by B. Debusschere in
Current site
Google Scholar
PubMed
Close
, and
V. E. Larson University of Wisconsin–Milwaukee, Milwaukee, Wisconsin

Search for other papers by V. E. Larson in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Many cloud microphysical processes occur on a much smaller scale than a typical numerical grid box can resolve. In such cases, a probability density function (PDF) can act as a proxy for subgrid variability in these microphysical processes. This method is known as the assumed PDF method. By placing a density on the microphysical fields, one can use samples from this density to estimate microphysics averages. In the assumed PDF method, the calculation of such microphysical averages has primarily been done using classical Monte Carlo methods and Latin hypercube sampling. Although these techniques are fairly easy to implement and ubiquitous in the literature, they suffer from slow convergence rates as a function of the number of samples. This paper proposes using deterministic quadrature methods instead of traditional random sampling approaches to compute the microphysics statistical moments for the assumed PDF method. For smooth functions, the quadrature-based methods can achieve much greater accuracy with fewer samples by choosing tailored quadrature points and weights instead of random samples. Moreover, these techniques are fairly easy to implement and conceptually similar to Monte Carlo–type methods. As a prototypical microphysical formula, Khairoutdinov and Kogan’s autoconversion and accretion formulas are used to illustrate the benefit of using quadrature instead of Monte Carlo or Latin hypercube sampling.

Corresponding author address: K. Chowdhary, Sandia National Laboratories, 7011 East Avenue, Livermore, CA 94551. E-mail: kchowdh@sandia.gov

Abstract

Many cloud microphysical processes occur on a much smaller scale than a typical numerical grid box can resolve. In such cases, a probability density function (PDF) can act as a proxy for subgrid variability in these microphysical processes. This method is known as the assumed PDF method. By placing a density on the microphysical fields, one can use samples from this density to estimate microphysics averages. In the assumed PDF method, the calculation of such microphysical averages has primarily been done using classical Monte Carlo methods and Latin hypercube sampling. Although these techniques are fairly easy to implement and ubiquitous in the literature, they suffer from slow convergence rates as a function of the number of samples. This paper proposes using deterministic quadrature methods instead of traditional random sampling approaches to compute the microphysics statistical moments for the assumed PDF method. For smooth functions, the quadrature-based methods can achieve much greater accuracy with fewer samples by choosing tailored quadrature points and weights instead of random samples. Moreover, these techniques are fairly easy to implement and conceptually similar to Monte Carlo–type methods. As a prototypical microphysical formula, Khairoutdinov and Kogan’s autoconversion and accretion formulas are used to illustrate the benefit of using quadrature instead of Monte Carlo or Latin hypercube sampling.

Corresponding author address: K. Chowdhary, Sandia National Laboratories, 7011 East Avenue, Livermore, CA 94551. E-mail: kchowdh@sandia.gov
Save
  • Barker, H. W., R. Pincus, and J.-J. Morcrette, 2002: The Monte Carlo independent column approximation: Application within large-scale models. GCSS-ARM Workshop on the Representation of Cloud Systems in Large-Scale Models, Kananaskis, AB, Canada, GEWEX, 1–10.

  • Bogenschutz, P. A., and S. K. Krueger, 2013: A simplified PDF parameterization of subgrid-scale clouds and turbulence for cloud-resolving models. J. Adv. Model. Earth Syst.,5, 195–211, doi:10.1002/jame.20018.

  • Bogenschutz, P. A., A. Gettelman, H. Morrison, V. E. Larson, C. Craig, and D. P. Schanen, 2013: Higher-order turbulence closure and its impact on climate simulations in the Community Atmosphere Model. J. Climate, 26, 96559676, doi:10.1175/JCLI-D-13-00075.1.

    • Search Google Scholar
    • Export Citation
  • Boyd, J. P., 1984: Asymptotic coefficients of Hermite function series. J. Comput. Phys., 54, 382410, doi:10.1016/0021-9991(84)90124-4.

    • Search Google Scholar
    • Export Citation
  • Boyd, J. P., 2000: Chebychev and Fourier Spectral Methods. 2nd ed. Dover Publications, 688 pp.

  • Cheng, A., and K.-M. Xu, 2006: Simulation of shallow cumuli and their transition to deep convective clouds by cloud-resolving models with different third-order turbulence closures. Quart. J. Roy. Meteor. Soc., 132, 359382, doi:10.1256/qj.05.29.

    • Search Google Scholar
    • Export Citation
  • Cheng, A., and K.-M. Xu, 2009: A PDF-based microphysics parameterization for simulation of drizzling boundary layer clouds. J. Atmos. Sci., 66, 23172334, doi:10.1175/2009JAS2944.1.

    • Search Google Scholar
    • Export Citation
  • Chuang, C. C., J. E. Penner, K. E. Taylor, A. S. Grossman, and J. J. Walton, 1997: An assessment of the radiative effects of anthropogenic sulfate. J. Geophys. Res., 102, 37613778, doi:10.1029/96JD03087.

    • Search Google Scholar
    • Export Citation
  • Gentle, J. E., 2003: Random Number Generation and Monte Carlo Methods. 2nd ed. Springer, 381 pp.

  • Gerstner, T., and M. Griebel, 1998: Numerical integration using sparse grids. Numer. Algorithms, 18, 209232, doi:10.1023/A:1019129717644.

    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., L. R. Leung, R. C. Easter, and H. Abdul-Razzak, 1997: Prediction of cloud droplet number in a general circulation model. J. Geophys. Res., 102, 21 77721 794, doi:10.1029/97JD01810.

    • Search Google Scholar
    • Export Citation
  • Glasserman, P., 2003: Monte Carlo Methods in Financial Engineering. Springer, 596 pp.

  • Golaz, J.-C., V. Larson, and W. R. Cotton, 2002: A PDF-based model for boundary layer clouds. Part I: Method and model description. J. Atmos. Sci., 59, 35403551, doi:10.1175/1520-0469(2002)059<3540:APBMFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Golaz, J.-C., M. Salzmann, L. J. Donner, L. W. Horowitz, Y. Ming, and M. Zhao, 2011: Sensitivity of the aerosol indirect effect to subgrid variability in the cloud parameterization of the GFDL atmosphere general circulation model AM3. J. Climate, 24, 31453160, doi:10.1175/2010JCLI3945.1.

    • Search Google Scholar
    • Export Citation
  • Griffin, B. M., and V. E. Larson, 2013: Analytic upscaling of a local microphysics scheme. Part II: Simulations. Quart. J. Roy. Meteor. Soc., 139, 5869, doi:10.1002/qj.1966.

    • Search Google Scholar
    • Export Citation
  • Guo, H., J.-C. Golaz, L. J. Donner, P. Ginoux, and R. S. Hemler, 2014: Multivariate probability density functions with dynamics in the GFDL atmospheric general circulation model: Global tests. J. Climate, 27, 20872108, doi:10.1175/JCLI-D-13-00347.1.

    • Search Google Scholar
    • Export Citation
  • Hesthaven, J. S., S. Gottlieb, and D. Gottlieb, 2006: Spectral Methods for Time-Dependent Problems. Cambridge University Press, 273 pp.

  • Hogan, R. J., and A. J. Illingworth, 2000: Deriving cloud overlap statistics from radar. Quart. J. Roy. Meteor. Soc., 126, 29032909, doi:10.1002/qj.49712656914.

    • Search Google Scholar
    • Export Citation
  • Holtz, M., 2010: Sparse Grid Quadrature in High Dimensions with Applications in Finance and Insurance. Springer, 200 pp.

  • Khairoutdinov, M., and Y. Kogan, 2000: A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon. Wea. Rev., 128, 229243, doi:10.1175/1520-0493(2000)128<0229:ANCPPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Larson, V. E., and J. Golaz, 2005: Using probability density functions to derive consistent closure relationships among higher-order moments. Mon. Wea. Rev., 133, 10231042, doi:10.1175/MWR2902.1.

    • Search Google Scholar
    • Export Citation
  • Larson, V. E., and B. M. Griffin, 2006: Coupling microphysics parameterizations to cloud parameterizations. 12th Conf. on Cloud Physics, Madison, WI, Amer. Meteor. Soc., P2.48. [Available online at https://ams.confex.com/ams/Madison2006/techprogram/paper_113330.htm.]

  • Larson, V. E., and B. M. Griffin, 2013: Analytic upscaling of local microphysics parameterizations, Part I: Derivation. Quart. J. Roy. Meteor. Soc., 139, 4657, doi:10.1002/qj.1967.

    • Search Google Scholar
    • Export Citation
  • Larson, V. E., and D. P. Schanen, 2013: The Subgrid Importance Latin Hypercube Sampler (SILHS): A multivariate subcolumn generator. Geosci. Model Dev., 6, 18131829, doi:10.5194/gmd-6-1813-2013.

    • Search Google Scholar
    • Export Citation
  • Larson, V. E., R. Wood, P. R. Field, J.-C. Golaz, T. H. Vonder Haar, and W. R. Cotton, 2001: Systematic biases in the microphysics and thermodynamics of numerical models that ignore subgrid variability. J. Atmos. Sci., 58, 11171128, doi:10.1175/1520-0469(2001)058<1117:SBITMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Larson, V. E., J.-C. Golaz, H. Jiang, and W. R. Cotton, 2005: Supplying local microphysics parameterizations with information about subgrid variability: Latin hypercube sampling. J. Atmos. Sci., 62, 40104026, doi:10.1175/JAS3624.1.

    • Search Google Scholar
    • Export Citation
  • Manteufel, R. D., 2000: Evaluating the convergence of Latin hypercube sampling. 41st AIAA/ASME Structures, Structural Dynamics and Materials Conf., Atlanta, GA, American Institute of Aeronautics and Astronautics, AIAA-2000-1636, 100–106. [Available online at http://arc.aiaa.org/doi/abs/10.2514/6.2000-1636.]

  • Manton, M. J., and W. R. Cotton, 1977: Formulation of approximate equations for modeling moist deep convection on the mesoscale. Atmospheric Science Paper 266, Colorado State University, 62 pp.

  • McKay, M. D., W. J. Conover, and R. J. Beckman, 1979: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21, 239245, doi:10.1080/00401706.1979.10489755.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., 1977: The Gaussian cloud model relations. J. Atmos. Sci., 34, 356358, doi:10.1175/1520-0469(1977)034<0356:TGCMR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Morcrette, J.-J., and Y. Fouquart, 1986: The overlapping of cloud layers in shortwave radiation parameterization. J. Atmos. Sci., 43, 321328, doi:10.1175/1520-0469(1986)043<0321:TOOCLI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Morcrette, J.-J., and C. Jakob, 2000: The response of the ECMWF model to changes in the cloud overlap assumption. Mon. Wea. Rev., 128, 17071732, doi:10.1175/1520-0493(2000)128<1707:TROTEM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21, 36423659, doi:10.1175/2008JCLI2105.1.

    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., D. Lee, Y. C. Sud, and M. J. Suarez, 2012: Radiative impacts of cloud heterogeneity and overlap in an atmospheric general circulation model. Atmos. Chem. Phys., 12, 90979111, doi:10.5194/acp-12-9097-2012.

    • Search Google Scholar
    • Export Citation
  • Owen, A. B., 1992: A central limit theorem for Latin hypercube sampling. J. Roy. Stat. Soc., 54, 541551.

  • Owen, A. B., 1998: Latin supercube sampling for very high-dimensional simulations. ACM Trans. Model. Comput. Simul., 8, 71102, doi:10.1145/272991.273010.

    • Search Google Scholar
    • Export Citation
  • Park, S., and C. S. Bretherton, 2009: The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model. J. Climate, 22, 34493469, doi:10.1175/2008JCLI2557.1.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., and S. A. Klein, 2000: Unresolved spatial variability and microphysical process rates in large-scale models. J. Geophys. Res., 105, 27 05927 065, doi:10.1029/2000JD900504.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., H. W. Barker, and J.-J. Morcrette, 2003: A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields. J. Geophys. Res., 108, 4376, doi:10.1029/2002JD003322.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., R. Hemler, and S. A. Klein, 2006: Using stochastically generated subcolumns to represent cloud structure in a large-scale model. Mon. Wea. Rev., 134, 36443656, doi:10.1175/MWR3257.1.

    • Search Google Scholar
    • Export Citation
  • Quarteroni, A., R. Sacco, and F. Saleri, 2007: Numerical Mathematics. 2nd ed. Springer, 655 pp.

  • Quarteroni, A., F. Saleri, and P. Gervasio, 2010: Scientific Computing with MATLAB and Octave. 3rd ed. Springer, 382 pp.

  • Räisänen, P., and H. W. Barker, 2004: Evaluation and optimization of sampling errors for the Monte Carlo Independent Column Approximation. Quart. J. Roy. Meteor. Soc., 130, 20692085, doi:10.1256/qj.03.215.

    • Search Google Scholar
    • Export Citation
  • Räisänen, P., H. W. Barker, M. F. Khairoutdinov, J. Li, and D. A. Randall, 2004: Stochastic generation of subgrid-scale cloudy columns for large-scale models. Quart. J. Roy. Meteor. Soc., 130, 20472067, doi:10.1256/qj.03.99.

    • Search Google Scholar
    • Export Citation
  • Räisänen, P., H. W. Barker, and J. N. S. Cole, 2005: The Monte Carlo Independent Column Approximation’s conditional random noise: Impact on simulated climate. J. Climate, 18, 47154730, doi:10.1175/JCLI3556.1.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and Coauthors, 2007: Rain in shallow cumulus over the ocean: The RICO campaign. Bull. Amer. Meteor. Soc., 88, 19121928, doi:10.1175/BAMS-88-12-1912.

    • Search Google Scholar
    • Export Citation
  • Robinson, D. G., 1998: A survey of probabilistic methods used in reliability, risk and uncertainty analysis: Analytical techniques I. Sandia National Laboratries rep. SAND-98-1189, 29 pp.

  • Smith, R. N. B., 1990: A scheme for predicting layer clouds and their water content in a general circulation model. Quart. J. Roy. Meteor. Soc., 116, 435460, doi:10.1002/qj.49711649210.

    • Search Google Scholar
    • Export Citation
  • Sommeria, G., and J. Deardorff, 1977: Subgrid-scale condensation in models of nonprecipitating clouds. J. Atmos. Sci., 34, 344355, doi:10.1175/1520-0469(1977)034<0344:SSCIMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stein, M., 1987: Large sample properties of simulations using Latin hypercube sampling. Technometrics, 29, 143151, doi:10.1080/00401706.1987.10488205.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2002: A prognostic parameterization for the subgrid-scale variability of water vapor and clouds in large-scale models and its use to diagnose cloud cover. J. Atmos. Sci., 59, 19171942, doi:10.1175/1520-0469(2002)059<1917:APPFTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • vanZanten, M., and Coauthors, 2011: Controls on precipitation and cloudiness in simulations of trade-wind cumulus as observed during RICO. J. Adv. Model. Earth Syst.,3, M06001, doi:10.1029/2011MS000056.

  • Xiu, D., 2009: Fast numerical methods for stochastic computations: A review. Comm. Comp. Phys., 5, 242272.

  • Zhang, J., U. Lohmann, and B. Lin, 2002: A new statistically based autoconversion rate parameterization for use in large-scale models. J. Geophys. Res., 107, 4750, doi:10.1029/2001JD001484.

    • Search Google Scholar
    • Export Citation