• Alberta Environment, 2013: Alberta’s river basins, river flows and levels. Subset used: April-August 2013, accessed August 2013. [Available online at http://www.environment.alberta.ca/apps/basins/.]

  • Archambault, H. M., L. F. Bosart, D. Keyser, and J. M. Cordeira, 2013: A climatological analysis of the extratropical flow response to recurving western North Pacific tropical cyclones. Mon. Wea. Rev., 141, 23252346, doi:10.1175/MWR-D-12-00257.1.

    • Search Google Scholar
    • Export Citation
  • Banacos, P. C., and D. M. Schultz, 2005: The use of moisture flux convergence in forecasting convective initiation: Historical and operational perspectives. Wea. Forecasting, 20, 351366, doi:10.1175/WAF858.1.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., and S. D. Schubert, 2001: Precipitation recycling over the central United States diagnosed from the GEOS-1 data assimilation system. J. Hydrometeor., 2, 2635, doi:10.1175/1525-7541(2001)002<0026:PROTCU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brimelow, J. C., and G. W. Reuter, 2005: Transport of atmospheric moisture during three extreme rainfall events over the Mackenzie River basin. J. Hydrometeor., 6, 423440, doi:10.1175/JHM430.1.

    • Search Google Scholar
    • Export Citation
  • Brubaker, K. L., D. Enekhabi, and P. S. Eagleson, 1993: Estimation of continental precipitation recycling. J. Climate, 6, 10771089, doi:10.1175/1520-0442(1993)006<1077:EOCPR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2000: Moist absolute instability: The sixth static stability state. Bull. Amer. Meteor. Soc., 81, 12071230, doi:10.1175/1520-0477(2000)081<1287:MAITSS>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Calgary Herald, 2014: Herald wins Online Journalism Award for flood coverage. [Available online at http://calgaryherald.com/news/local-news/herald-wins-online-journalism-award-for-flood-coverage.]

  • Caracena, F., R. A. Maddox, L. R. Hoxit, and C. F. Chappell, 1979: Mesoanalysis of the Big Thompson storm. Mon. Wea. Rev., 107, 117, doi:10.1175/1520-0493(1979)107<0001:MOTBTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cheresnick, D. R., and J. B. Basara, 2005: The impact of land–atmosphere interactions on the Benson, Minnesota, tornado of 11 June 2001. Bull. Amer. Meteor. Soc., 86, 637642, doi:10.1175/BAMS-86-5-637.

    • Search Google Scholar
    • Export Citation
  • Climat-Quebec, 2014: Data access, data and climate networks. Accessed June 2014. [Available online at http://www.climat-quebec.qc.ca/home.php?id=guic_d_donn&mpn=misc.]

  • DeAngelis, A., F. Dominguez, Y. Fan, A. Robock, M. D. Kustu, and D. Robinson, 2010: Evidence of enhanced precipitation due to irrigation over the Great Plains of the United States. J. Geophys. Res., 115, D15115, doi:10.1029/2010JD013892.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and K. L. Brubaker, 1999: Contrasting evaporative moisture sources during the drought of 1988 and the flood of 1993. J. Geophys. Res., 104, 19 38319 397, doi:10.1029/1999JD900222.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and J. L. Kinter III, 2010: Floods over the U.S. Midwest: A regional water cycle perspective. J. Hydrometeor., 11, 11721181, doi:10.1175/2010JHM1196.1.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., C. A. Schlosser, and K. L. Brubaker, 2009: Precipitation, recycling, and land memory: An integrated analysis. J. Hydrometeor., 10, 278288, doi:10.1175/2008JHM1016.1.

    • Search Google Scholar
    • Export Citation
  • Dominguez, F., and P. Kumar, 2008: Precipitation recycling variability and ecoclimatological stability—A study using NARR data. Part I: Central U.S. plains ecoregion. J. Climate, 21, 51655186, doi:10.1175/2008JCLI1756.1.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560581, doi:10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Draxler, R. R., and G. D. Rolph, 2012: HYSPLIT—Hybrid Single Particle Lagrangian Integrated Trajectory model. [Available online at http://ready.arl.noaa.gov/HYSPLIT.php.]

  • Environment Canada, 2014a: About radar. [Available online at http://www.ec.gc.ca/meteo-weather/default.asp?lang=En&n=2B931828-1.]

  • Environment Canada, 2014b: Canada’s top ten weather stories for 2013. [Available online at http://www.ec.gc.ca/meteo-weather/default.asp?lang=En&n=5BA5EAFC-1.]

  • Environment Canada, 2014c: Canadian historical weather radar. Subset used: 19-21 June 2013, accessed June 2014. [Available online at http://climate.weather.gc.ca/radar/index_e.html.]

  • Environment Canada, 2014d: Canadian historical climate data. Accessed June 2014. [Available online at http://climate.weather.gc.ca/.]

  • Flesch, T. K., and G. W. Reuter, 2012: WRF model simulation of two Alberta flooding events and the impact of topography. J. Hydrometeor., 13, 695708, doi:10.1175/JHM-D-11-035.1.

    • Search Google Scholar
    • Export Citation
  • Gochis, D., and Coauthors, 2015: The Great Colorado Flood of September 2013. Bull. Amer. Meteor. Soc., in press.

  • Government of Alberta, 2014: Alberta 2013–2014 flood recovery update. [Available online at http://alberta.ca/Flood-recovery-update.cfm.]

  • Gyakum, J. R., 2008: The application of Fred Sanders’ teaching to current research on extreme cold-season precipitation events in the Saint Lawrence River Valley region. Synoptic–Dynamic Meteorology and Weather Analysis and Forecasting: A Tribute to Fred Sanders, Meteor. Monogr., No. 55, Amer. Meteor. Soc., 241–250.

  • Gyakum, J. R., and P. J. Roebber, 2001: The 1998 ice storm—Analysis of a planetary-scale event. Mon. Wea. Rev., 129, 29832997, doi:10.1175/1520-0493(2001)129<2983:TISAOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 2014: Performance of operational model precipitation forecast guidance during the 2013 Colorado Front-Range floods. Mon. Wea. Rev., 142, 26092618, doi:10.1175/MWR-D-14-00007.1.

    • Search Google Scholar
    • Export Citation
  • Harding, K. J., and P. K. Snyder, 2012a: Modeling the atmospheric response to irrigation in the Great Plains. Part I: General impacts on precipitation and the energy budget. J. Hydrometeor., 13, 16671686, doi:10.1175/JHM-D-11-098.1.

    • Search Google Scholar
    • Export Citation
  • Harding, K. J., and P. K. Snyder, 2012b: Modeling the atmospheric response to irrigation in the Great Plains. Part II: The precipitation of irrigated water and changes in precipitation recycling. J. Hydrometeor., 13, 16671686, doi:10.1175/JHM-D-11-098.1.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., I. Draghici, and H. C. Davies, 1978: A new look at the omega equation. Quart. J. Roy. Meteor. Soc., 104, 3138, doi:10.1002/qj.49710443903.

    • Search Google Scholar
    • Export Citation
  • Huffington Post Alberta, 2014: 19 most powerful images from the Alberta floods. [Available online at http://www.huffingtonpost.ca/2014/06/17/alberta-flood-photos_n_5504373.html.]

  • Junker, N. W., R. S. Schneider, and S. L. Fauver, 1999: A study of heavy rainfall events during the Great Midwest Flood of 1993. Wea. Forecasting, 14, 701712, doi:10.1175/1520-0434(1999)014<0701:ASOHRE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., 1989: Description of the NMC global data assimilation scheme. Wea. Forecasting, 4, 335342, doi:10.1175/1520-0434(1989)004<0335:DOTNGD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Keyser, D., M. J. Reeder, and R. J. Reed, 1988: A generalization of Petterssen’s frontogenesis function and its relation to the forcing of vertical motion. Mon. Wea. Rev., 116, 762780, doi:10.1175/1520-0493(1988)116<0762:AGOPFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Keyser, D., B. D. Schmidt, and D. G. Duffy, 1992: Quasigeostrophic vertical motions diagnosed from along- and cross-isentrope components of the Q vector. Mon. Wea. Rev., 120, 731741, doi:10.1175/1520-0493(1992)120<0731:QVMDFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koch, S., M. DesJardins, and P. Kocin, 1983: An interactive Barnes objective map analysis scheme for use with satellite and conventional data. J. Climate Appl. Meteor., 22, 14871503, doi:10.1175/1520-0450(1983)022<1487:AIBOMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., and J. R. Gyakum, 1996: The synoptic- and planetary-scale signatures over the Mackenzie River Basin. Atmos.–Ocean, 34, 647674, doi:10.1080/07055900.1996.9649581.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., and G. Villarini, 2013: Were global numerical weather prediction systems capable of forecasting the extreme Colorado rainfall of 9–16 September 2013? Geophys. Res. Lett., 40, 64056410, doi:10.1002/2013GL058282.

    • Search Google Scholar
    • Export Citation
  • Lynch, S. L., and R. S. Schumacher, 2014: Ensemble-based analysis of the May 2010 extreme rainfall in Tennessee and Kentucky. Mon. Wea. Rev., 142, 222239, doi:10.1175/MWR-D-13-00020.1.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., L. R. Hoxit, C. F. Chappell, and F. Caracena, 1978: Comparison of meteorological aspects of the Big Thompson and Rapid City flash floods. Mon. Wea. Rev., 106, 375389, doi:10.1175/1520-0493(1978)106<0375:COMAOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., C. F. Chappell, and L. R. Hoxit, 1979: Synoptic and meso-α aspects of flash flood events. Bull. Amer. Meteor. Soc., 60, 115123, doi:10.1175/1520-0477-60.2.115.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., F. Canova, and L. R. Hoxit, 1980: Meteorological characteristics of flash flood events over the western United States. Mon. Wea. Rev., 108, 1866–1877, doi:10.1175/1520-0493(1980)108<1866:MCOFFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mahfouf, J. F., B. Brasnett, and S. Gagnon, 2007: A Canadian precipitation analysis (CaPA) project: Description and preliminary results. Atmos.–Ocean, 45, 117, doi:10.3137/ao.450101.

    • Search Google Scholar
    • Export Citation
  • Martin, J. E., 1999: Quasigeostrophic forcing of ascent in the occluded sector of cyclones and the trowal airstream. Mon. Wea. Rev., 127, 7088, doi:10.1175/1520-0493(1999)127<0070:QFOAIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Martin, J. E., 2006a: Mid-latitude Atmospheric Dynamics: A First Course. John Wiley and Sons Ltd., 324 pp.

  • Martin, J. E., 2006b: The role of shearwise and transverse quasigeostrophic vertical motions in the midlatitude cyclone life cycle. Mon. Wea. Rev., 134, 11741193, doi:10.1175/MWR3114.1.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2001: A mesoscale modeling study of the 1996 Saguenay Flood. Mon. Wea. Rev., 129, 14191440, doi:10.1175/1520-0493(2001)129<1419:AMMSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Milrad, S. M., and C. M. Kelly, 2013: Synoptic-scale precursors, characteristics, and typing of nocturnal mesoscale convective complexes in the Great Plains. Electron. J. Severe Storms Meteor.,8 (4). [Available online at http://www.ejssm.org/ojs/index.php/ejssm/issue/view/46.]

  • Milrad, S. M., E. H. Atallah, and J. R. Gyakum, 2009a: Dynamical and precipitation structures of poleward-moving tropical cyclones in eastern Canada, 1979–2005. Mon. Wea. Rev., 137, 836851, doi:10.1175/2008MWR2578.1.

    • Search Google Scholar
    • Export Citation
  • Milrad, S. M., E. H. Atallah, and J. R. Gyakum, 2009b: Synoptic-scale characteristics and precursors of cool-season precipitation events at St John’s, Newfoundland, 1979–2005. Wea. Forecasting, 24, 667689, doi:10.1175/2008WAF2222167.1.

    • Search Google Scholar
    • Export Citation
  • Milrad, S. M., E. H. Atallah, and J. R. Gyakum, 2010a: A diagnostic examination of consecutive extreme cool-season precipitation events at St. John’s, Newfoundland, in December 2008. Wea. Forecasting, 25, 9971026, doi:10.1175/2010WAF2222371.1.

    • Search Google Scholar
    • Export Citation
  • Milrad, S. M., E. H. Atallah, and J. R. Gyakum, 2010b: Synoptic typing of extreme cool-season precipitation events at St. John’s, Newfoundland, 1979–2005. Wea. Forecasting, 25, 562586, doi:10.1175/2009WAF2222301.1.

    • Search Google Scholar
    • Export Citation
  • Milrad, S. M., E. H. Atallah, J. R. Gyakum, and G. Dookhie, 2014a: Synoptic-scale precursors and typing of warm-season precipitation events at Montreal, Quebec. Wea. Forecasting, 29, 419444, doi:10.1175/WAF-D-13-00030.1.

    • Search Google Scholar
    • Export Citation
  • Milrad, S. M., J. R. Gyakum, K. Lombardo, and E. H. Atallah, 2014b: On the dynamics, thermodynamics, and forecast model evaluation of two snow-burst events in southern Alberta. Wea. Forecasting, 29, 725749, doi:10.1175/WAF-D-13-00099.1.

    • Search Google Scholar
    • Export Citation
  • Moore, B. J., P. J. Neiman, F. M. Ralph, and F. E. Barthold, 2012: Physical processes associated with heavy flooding rainfall in Nashville, Tennessee, and vicinity during 1–2 May 2010: The role of an atmospheric river and mesoscale convective systems. Mon. Wea. Rev., 140, 358378, doi:10.1175/MWR-D-11-00126.1.

    • Search Google Scholar
    • Export Citation
  • Newman, M., G. N. Kiladis, K. M. Weickmann, F. M. Ralph, and P. D. Sardeshmukh, 2012: Relative contributions of synoptic and low-frequency eddies to time-mean atmospheric moisture transport, including the role of atmospheric rivers. J. Climate, 25, 73417361, doi:10.1175/JCLI-D-11-00665.1.

    • Search Google Scholar
    • Export Citation
  • Pfahl, S., and H. Wernli, 2012: Quantifying the relevance of cyclones for precipitation extremes. J. Climate, 25, 67706780, doi:10.1175/JCLI-D-11-00705.1.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, and G. A. Wick, 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 17211745, doi:10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, G. N. Kiladis, K. Weickmann, and D. W. Reynolds, 2011: A multiscale observational case study of a North Pacific atmospheric river exhibiting tropical–extratropical connections and a mesoscale frontal wave. Mon. Wea. Rev., 139, 11691189, doi:10.1175/2010MWR3596.1.

    • Search Google Scholar
    • Export Citation
  • Rex, D. F., 1950: Blocking action in the middle troposphere and its effect upon regional climate. Part I: An aerological study of blocking action. Tellus, 2A, 196211, doi:10.1111/j.2153-3490.1950.tb00331.x.

    • Search Google Scholar
    • Export Citation
  • Roberge, A., J. Gyakum, and E. Atallah, 2009: Analysis of intense poleward water vapor transports into high latitudes of western North America. Wea. Forecasting, 24, 17321747, doi:10.1175/2009WAF2222198.1.

    • Search Google Scholar
    • Export Citation
  • Rutz, J. J., W. J. Steenburgh, and F. M. Ralph, 2014: Climatological characteristics of atmospheric rivers and their inland penetration over the western United States. Mon. Wea. Rev., 142, 905921, doi:10.1175/MWR-D-13-00168.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., and P. N. Schumacher, 1999: The use and misuse of conditional symmetric instability. Mon. Wea. Rev., 127, 27092732, doi:10.1175/1520-0493(1999)127<2709:TUAMOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and R. H. Johnson, 2005: Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Mon. Wea. Rev., 133, 961976, doi:10.1175/MWR2899.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and R. H. Johnson, 2006: Characteristics of U.S. extreme rain events during 1999–2003. Wea. Forecasting, 21, 6985, doi:10.1175/WAF900.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and R. H. Johnson, 2008: Mesoscale processes contributing to extreme rainfall in a midlatitude warm-season flash flood. Mon. Wea. Rev., 136, 39643986, doi:10.1175/2008MWR2471.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and R. H. Johnson, 2009: Quasi-stationary, extreme-rain-producing convective systems associated with midlevel cyclonic circulations. Wea. Forecasting, 24, 555574, doi:10.1175/2008WAF2222173.1.

    • Search Google Scholar
    • Export Citation
  • Szeto, K., W. Henson, R. Stewart, and G. Gascon, 2011: The catastrophic June 2002 prairie rainstorm. Atmos.–Ocean, 49, 380395, doi:10.1080/07055900.2011.623079.

    • Search Google Scholar
    • Export Citation
  • Zangvil, A., D. H. Portis, and P. J. Lamb, 2004: Investigation of the large-scale atmospheric moisture field over the midwestern United States in relation to summer precipitation. Part II: Recycling of local evapotranspiration and association with soil moisture and crop yields. J. Climate, 17, 32833301, doi:10.1175/1520-0442(2004)017<3283:IOTLAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2153 1404 28
PDF Downloads 1470 935 10

A Meteorological Analysis of the 2013 Alberta Flood: Antecedent Large-Scale Flow Pattern and Synoptic–Dynamic Characteristics

View More View Less
  • 1 Department of Applied Aviation Sciences, Embry-Riddle Aeronautical University, Daytona Beach, Florida
  • | 2 Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada
Restricted access

Abstract

The 19–21 June 2013 Alberta flood was the costliest (CAD $6 billion) natural disaster in Canadian history. The flood was caused by a combination of above-normal spring snowmelt in the Canadian Rockies, large antecedent precipitation, and an extreme rainfall event on 19–21 June that produced rainfall totals of 76 mm in Calgary and 91 mm in the foothills. As is typical of flash floods along the Front Range of the Rocky Mountains, rapidly rising streamflow proceeded to move downhill (eastward) into Calgary.

A meteorological analysis traces an antecedent Rossby wave train across the North Pacific Ocean, starting with intense baroclinic development over East Asia on 11 June. Subsequently, downstream Rossby wave development occurred across the North Pacific; a 1032-hPa subtropical anticyclone located northeast of Hawaii initiated a southerly atmospheric river into Alaska, which contributed to the development of a cutoff anticyclone over Alaska and a Rex block (ridge to the north, cyclone to the south) in the northeastern North Pacific. Upon breakdown of the Rex block, lee cyclogenesis occurred in Montana and strong easterly upslope flow was initiated in southern Alberta.

The extreme rainfall event was produced in association with a combination of quasigeostrophically and orographically forced ascent, which acted to release conditional and convective instability. As in past Front Range flash floods, moisture flux convergence and positive θe advection were collocated with the heavy rainfall. Backward trajectories show that air parcels originated in the northern U.S. plains, suggesting that evapotranspiration from the local land surface may have acted as a moisture source.

Corresponding author address: Shawn M. Milrad, Department of Applied Aviation Sciences, Embry-Riddle Aeronautical University, 600 S. Clyde Morris Blvd., Daytona Beach, FL 32114. E-mail: shawn.milrad@gmail.com

Abstract

The 19–21 June 2013 Alberta flood was the costliest (CAD $6 billion) natural disaster in Canadian history. The flood was caused by a combination of above-normal spring snowmelt in the Canadian Rockies, large antecedent precipitation, and an extreme rainfall event on 19–21 June that produced rainfall totals of 76 mm in Calgary and 91 mm in the foothills. As is typical of flash floods along the Front Range of the Rocky Mountains, rapidly rising streamflow proceeded to move downhill (eastward) into Calgary.

A meteorological analysis traces an antecedent Rossby wave train across the North Pacific Ocean, starting with intense baroclinic development over East Asia on 11 June. Subsequently, downstream Rossby wave development occurred across the North Pacific; a 1032-hPa subtropical anticyclone located northeast of Hawaii initiated a southerly atmospheric river into Alaska, which contributed to the development of a cutoff anticyclone over Alaska and a Rex block (ridge to the north, cyclone to the south) in the northeastern North Pacific. Upon breakdown of the Rex block, lee cyclogenesis occurred in Montana and strong easterly upslope flow was initiated in southern Alberta.

The extreme rainfall event was produced in association with a combination of quasigeostrophically and orographically forced ascent, which acted to release conditional and convective instability. As in past Front Range flash floods, moisture flux convergence and positive θe advection were collocated with the heavy rainfall. Backward trajectories show that air parcels originated in the northern U.S. plains, suggesting that evapotranspiration from the local land surface may have acted as a moisture source.

Corresponding author address: Shawn M. Milrad, Department of Applied Aviation Sciences, Embry-Riddle Aeronautical University, 600 S. Clyde Morris Blvd., Daytona Beach, FL 32114. E-mail: shawn.milrad@gmail.com
Save