• Back, L. E., and C. S. Bretherton, 2009: On the relationship between SST gradients, boundary layer winds, and convergence over the tropical oceans. J. Climate, 22, 41824196, doi:10.1175/2009JCLI2392.1.

    • Search Google Scholar
    • Export Citation
  • Brown, P. J., and C. D. Kummerow, 2014: An assessment of atmospheric water budget components over tropical oceans. J. Climate, 27, 20542071, doi:10.1175/JCLI-D-13-00385.1.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., M. C. Wheeler, and A. H. Sobel, 2009: Diagnosis of the MJO modulation of tropical cyclogensis using an empirical index. J. Atmos. Sci., 66, 30613074, doi:10.1175/2009JAS3101.1.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, M. H. Freilich, and R. F. Milliff, 2004: Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303, 978983, doi:10.1126/science.1091901.

    • Search Google Scholar
    • Export Citation
  • Colella, P., 1990: Multidimensional upwind methods for hyperbolic conservation laws. J. Comput. Phys., 87, 171200, doi:10.1016/0021-9991(90)90233-Q.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, doi:10.1007/BF00119502.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., and J. B. Edson, 2015: Intraseasonal air-sea interaction and convection observed during DYNAMO/CINDY/AMIE and TOGA COARE. The Global Monsoon System: Research and Forecast, C. P. Chang, Ed., World Scientific, in press.

  • de Szoeke, S. P., J. B. Edson, J. R. Marion, C. W. Fairall, and L. Bariteau, 2015: The MJO and air-sea interaction in TOGA COARE and DYNAMO. J. Climate, 28, 597622, doi:10.1175/JCLI-D-14-00477.1.

    • Search Google Scholar
    • Export Citation
  • Ducros, F., P. Comte, and M. Lesieur, 1996: Large-eddy simulation of transition to turbulence in a boundary layer developing spatially over a flat plate. J. Fluid Mech., 326, 136, doi:10.1017/S0022112096008221.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and J. B. Klemp, 1983: A compressible model for the simulation of moist mountain waves. Mon. Wea. Rev., 111, 23412361, doi:10.1175/1520-0493(1983)111<2341:ACMFTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of air–sea fluxes for Tropical Ocean–Global Atmosphere Coupled Ocean Atmosphere Response Experiment. J. Geophys. Res., 101, 37473764, doi:10.1029/95JC03205.

    • Search Google Scholar
    • Export Citation
  • Feng, Z., S. Hagos, A. K. Rowe, C. D. Burleyson, M. N. Martini, and S. P. de Szoeke, 2015: Mechanisms of convective cloud organization by cold pools over tropical warm ocean during the AMIE/DYNAMO field campaign. J. Adv. Model. Earth Syst., doi:10.1002/2014MS000384, in press.

    • Search Google Scholar
    • Export Citation
  • Folkins, I., 2013: The melting level stability anomaly in the tropics. Atmos. Chem. Phys., 13, 11671176, doi:10.5194/acp-13-1167-2013.

    • Search Google Scholar
    • Export Citation
  • Houston, A. L., and R. B. Wilhelmson, 2012: The impact of airmass boundaries on the propagation of deep convection: A modeling-based study in a high-CAPE, low-shear environment. Mon. Wea. Rev., 140, 167183, doi:10.1175/MWR-D-10-05033.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78, 21792196, doi:10.1175/1520-0477(1997)078<2179:SPIROC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, doi:10.1029/2004RG000150.

  • Jabouille, P., J. L. Redelsperger, and J. P. Lafore, 1996: Modification of surface fluxes by atmospheric convection in the TOGA COARE region. Mon. Wea. Rev., 124, 816837, doi:10.1175/1520-0493(1996)124<0816:MOSFBA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and P. E. Ciesielski, 2013: Structure and properties of Madden–Julian Oscillations deduced from DYNAMO sounding arrays. J. Atmos. Sci., 70, 31573179, doi:10.1175/JAS-D-13-065.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 23972418, doi:10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kemball-Cook, S. R., and B. C. Weare, 2001: The onset of convection in the Madden–Julian oscillation. J. Climate, 14, 780793, doi:10.1175/1520-0442(2001)014<0780:TOOCIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., S. K. Krueger, C.-H. Moeng, P. Bogenschutz, and D. A. Randall, 2009: Large-eddy simulation of maritime deep tropical convection. J. Adv. Model. Earth Syst., 1 (15), doi:10.3894/JAMES.2009.1.15.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., 2008: Modeling the interaction between cumulus convection and linear internal gravity waves using a limited-domain cloud system-resolving model. J. Atmos. Sci., 65, 576591, doi:10.1175/2007JAS2399.1.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Li, Y., and R. E. Carbone, 2012: Excitation of rainfall over the tropical western Pacific. J. Atmos. Sci., 69, 29832994, doi:10.1175/JAS-D-11-0245.1.

    • Search Google Scholar
    • Export Citation
  • Li, Z., P. Zuidema, and P. Zhu, 2014: Simulated convective invigoration processes at trade wind cumulus cold pool boundaries. J. Atmos. Sci., 71, 2823–2841, doi:10.1175/JAS-D-13-0184.1.

    • Search Google Scholar
    • Export Citation
  • Lin, X., and R. H. Johnson, 1996: Heating, moistening, and rainfall over the western Pacific warm pool during TOGA COARE. J. Atmos. Sci., 53, 33673383, doi:10.1175/1520-0469(1996)053<3367:HMAROT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2000: Modulation of hurricane activity in the Gulf of Mexico by the Madden–Julian Oscillation. Science, 287, 20022004, doi:10.1126/science.287.5460.2002.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 2001: Water’s two height scales: The moist adiabat and the radiative troposphere. Quart. J. Roy. Meteor. Soc., 127, 23532366, doi:10.1002/qj.49712757708.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., M. A. LeMone, M. F. Khairoutdinov, S. K. Krueger, P. A. Bogenschutz, and D. A. Randall, 2009: The tropical marine boundary layer under a deep convection system: A large-eddy simulation study. J. Adv. Model. Earth Syst.,1 (16), doi:10.3894/JAMES.2009.1.16.

  • Moum, J. N., and Coauthors, 2014: Air–sea interactions from westerly wind bursts during the November 2011 MJO in the Indian Ocean. Bull. Amer. Meteor. Soc.,95, 1185–1199, doi:10.1175/BAMS-D-12-00225.1.

  • Posselt, D. J., S. C. van den Heever, and G. L. Stephens, 2008: Trimodal cloudiness and tropical stable layers in simulations of radiative convective equilibrium. Geophys. Res. Lett., 35, L08802, doi:10.1029/2007GL033029.

    • Search Google Scholar
    • Export Citation
  • Powell, S. W., and R. A. Houze, 2013: The cloud population and onset of the Madden–Julian Oscillation over the Indian Ocean during DYNAMO-AMIE. J. Geophys. Res. Atmos.,118, 11 979–11 995, doi:10.1002/2013JD020421.

  • Raymond, D. J., and X. Zeng, 2005: Modelling tropical atmospheric convection in the context of the weak temperature approximation. Quart. J. Roy. Meteor. Soc., 131, 13011320, doi:10.1256/qj.03.97.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, doi:10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., and J. B. Edson, 2009: Large-eddy simulation of moist convection during a cold-air outbreak over the Gulf Stream. J. Atmos. Sci., 66, 12741293, doi:10.1175/2008JAS2755.1.

    • Search Google Scholar
    • Export Citation
  • Small, R. J., and Coauthors, 2008: Air–sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans, 45, 274319, doi:10.1016/j.dynatmoce.2008.01.001.

    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., E. D. Skyllingstad, G. Crawford, and H. Wijesekera, 2002: Nonlocal fluxes and Stokes drift effects in the K-profile parameterization. Ocean Dyn., 52, 104115, doi:10.1007/s10236-002-0012-9.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and C. S. Bretherton, 2000: Modeling tropical precipitation in a single column. J. Climate, 13, 43784392, doi:10.1175/1520-0442(2000)013<4378:MTPIAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2001: Organization of tropical convection in low vertical wind shears: The role of water vapor. J. Atmos. Sci., 58, 529545, doi:10.1175/1520-0469(2001)058<0529:OOTCIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vickers, D., and L. Mahrt, 2006: Evaluation of the air-sea bulk formula and sea-surface temperature variability from observations. J. Geophys. Res., 111, C05002, doi:10.1029/2005JC003323.

    • Search Google Scholar
    • Export Citation
  • Wang, S., A. H. Sobel, and Z. Kuang, 2013: Cloud-resolving simulation of TOGA-COARE using parameterized large-scale dynamics. J. Geophys. Res. Atmos., 118, 62906301, doi:10.1002/jgrd.50510.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and R. Lukas, 1992: TOGA COARE: The Coupled Ocean–Atmosphere Response Experiment. Bull. Amer. Meteor. Soc., 73, 13771416, doi:10.1175/1520-0477(1992)073<1377:TCTCOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and D. B. Parsons, 2006: A review of convection initiation and motivation for IHOP_2002. Mon. Wea. Rev., 134, 522, doi:10.1175/MWR3067.1.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., 2009: A two-step Adams–Bashforth–Moulton split-explicit integrator for compressible atmospheric models. Mon. Wea. Rev., 137, 35883595, doi:10.1175/2009MWR2838.1.

    • Search Google Scholar
    • Export Citation
  • Woolnough, S. J., and Coauthors, 2010: Modelling convective processes during the suppressed phase of a Madden–Julian oscillation: Comparing single-column models with cloud-resolving models. Quart. J. Roy. Meteor. Soc., 136, 333353, doi:10.1002/qj.568.

    • Search Google Scholar
    • Export Citation
  • Wu, X., and S. Guimond, 2006: Two- and three-dimensional cloud-resolving model simulations of the mesoscale enhancement of surface heat fluxes by precipitating deep convection. J. Climate, 19, 139149, doi:10.1175/JCL3610.1.

    • Search Google Scholar
    • Export Citation
  • Yasunaga, K., A. Hashimoto, and M. Yoshizaki, 2008: Numerical simulation of the formation of melting-layer cloud. Mon. Wea. Rev., 136, 223241, doi:10.1175/2007MWR2012.1.

    • Search Google Scholar
    • Export Citation
  • Young, G. S., S. M. Perugini, and C. W. Fairall, 1995: Convective wakes in the equatorial western Pacific during TOGA. Mon. Wea. Rev., 123, 110123, doi:10.1175/1520-0493(1995)123<0110:CWITEW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., and Coauthors, 2012: On trade wind cumulus cold pools. J. Atmos. Sci., 69, 258280, doi:10.1175/JAS-D-11-0143.1.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 340 284 3
PDF Downloads 78 48 2

Cloud-Resolving Large-Eddy Simulation of Tropical Convective Development and Surface Fluxes

View More View Less
  • 1 College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon
Restricted access

Abstract

Cloud-resolving large-eddy simulations (LES) on a 500 km × 500 km periodic domain coupled to a thermodynamic ocean mixed layer are used to study the effect of large-scale moisture convergence M on the convective population and heat and moisture budgets of the tropical atmosphere, for several simulations with M representative of the suppressed, transitional, and active phases of the Madden–Julian oscillation (MJO). For a limited-area model without an imposed vertical velocity, M controls the overall vertical temperature structure. Moisture convergence equivalent to ~200 W m−2 (9 mm day−1) maintains the observed temperature profile above 5 km. Increased convective heating for simulations with higher M is partially offset by greater infrared cooling, suggesting a potential negative feedback that helps maintain the weak temperature gradient conditions observed in the tropics. Surface evaporation decreases as large-scale moisture convergence increases, and is only a minor component of the overall water budget for convective conditions representing the active phase of the MJO. Cold pools generated by evaporation of precipitation under convective conditions are gusty, with roughly double the wind stress of their surroundings. Consistent with observations, enhanced surface evaporation due to cold pool gusts is up to 40% of the mean, but has a small effect on the total moisture budget compared to the imposed large-scale moisture convergence.

Corresponding author address: Eric Skyllingstad, CEOAS, 104 CEOAS Admin. Bldg., Oregon State University, Corvallis, OR 97331. E-mail: skylling@coas.oregonstate.edu

This article is included in the DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation special collection.

Abstract

Cloud-resolving large-eddy simulations (LES) on a 500 km × 500 km periodic domain coupled to a thermodynamic ocean mixed layer are used to study the effect of large-scale moisture convergence M on the convective population and heat and moisture budgets of the tropical atmosphere, for several simulations with M representative of the suppressed, transitional, and active phases of the Madden–Julian oscillation (MJO). For a limited-area model without an imposed vertical velocity, M controls the overall vertical temperature structure. Moisture convergence equivalent to ~200 W m−2 (9 mm day−1) maintains the observed temperature profile above 5 km. Increased convective heating for simulations with higher M is partially offset by greater infrared cooling, suggesting a potential negative feedback that helps maintain the weak temperature gradient conditions observed in the tropics. Surface evaporation decreases as large-scale moisture convergence increases, and is only a minor component of the overall water budget for convective conditions representing the active phase of the MJO. Cold pools generated by evaporation of precipitation under convective conditions are gusty, with roughly double the wind stress of their surroundings. Consistent with observations, enhanced surface evaporation due to cold pool gusts is up to 40% of the mean, but has a small effect on the total moisture budget compared to the imposed large-scale moisture convergence.

Corresponding author address: Eric Skyllingstad, CEOAS, 104 CEOAS Admin. Bldg., Oregon State University, Corvallis, OR 97331. E-mail: skylling@coas.oregonstate.edu

This article is included in the DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation special collection.

Save