Radar and Lightning Observations of Deep Moist Convection across Northern Alabama during DC3: 21 May 2012

Retha Matthee Mecikalski Atmospheric Science Department, University of Alabama in Huntsville, Huntsville, Alabama

Search for other papers by Retha Matthee Mecikalski in
Current site
Google Scholar
PubMed
Close
,
Anthony L. Bain Atmospheric Science Department, University of Alabama in Huntsville, Huntsville, Alabama

Search for other papers by Anthony L. Bain in
Current site
Google Scholar
PubMed
Close
, and
Lawrence D. Carey Atmospheric Science Department, University of Alabama in Huntsville, Huntsville, Alabama

Search for other papers by Lawrence D. Carey in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The Deep Convective Clouds and Chemistry (DC3) experiment seeks to understand the kinematic and microphysical controls on the lightning behavior of deep moist convection. This study utilized multiple dual-polarization Doppler radars across northern Alabama to quantify microphysical and kinematic properties and processes that often serve as precursors to lightning, such as the graupel echo volume, graupel mass, and convective updraft volume. The focus here was on one multicellular complex that occurred on 21 May 2012 in northern Alabama during DC3. The graupel echo volume and the graupel mass in the charging region correlated well with the total lightning flash rate (FR), and even better than the updraft volumes and maximum updraft velocities. The flash length scales (LS) and flash areas were generally anticorrelated to the FR, while it was correlated to the nonprecipitation ice volume. More specifically, the presence of smaller flashes was associated with a stronger lower positive charge region caused by larger graupel volumes, stronger updraft volumes, and stronger maximum updraft velocities while larger flashes occurred during lower FRs and were associated with a weakened lower positive charge region in combination with a stronger upper positive charge region, weaker updraft velocities, a smaller graupel volume and mass, and an increase in nonprecipitation ice volume.

Corresponding author address: Retha Matthee Mecikalski, Atmospheric Science Department, University of Alabama in Huntsville, National Space Science and Technology Center, 320 Sparkman Dr., Huntsville, AL 35805–1912. E-mail: retha.mecikalski@nsstc.uah.edu

Abstract

The Deep Convective Clouds and Chemistry (DC3) experiment seeks to understand the kinematic and microphysical controls on the lightning behavior of deep moist convection. This study utilized multiple dual-polarization Doppler radars across northern Alabama to quantify microphysical and kinematic properties and processes that often serve as precursors to lightning, such as the graupel echo volume, graupel mass, and convective updraft volume. The focus here was on one multicellular complex that occurred on 21 May 2012 in northern Alabama during DC3. The graupel echo volume and the graupel mass in the charging region correlated well with the total lightning flash rate (FR), and even better than the updraft volumes and maximum updraft velocities. The flash length scales (LS) and flash areas were generally anticorrelated to the FR, while it was correlated to the nonprecipitation ice volume. More specifically, the presence of smaller flashes was associated with a stronger lower positive charge region caused by larger graupel volumes, stronger updraft volumes, and stronger maximum updraft velocities while larger flashes occurred during lower FRs and were associated with a weakened lower positive charge region in combination with a stronger upper positive charge region, weaker updraft velocities, a smaller graupel volume and mass, and an increase in nonprecipitation ice volume.

Corresponding author address: Retha Matthee Mecikalski, Atmospheric Science Department, University of Alabama in Huntsville, National Space Science and Technology Center, 320 Sparkman Dr., Huntsville, AL 35805–1912. E-mail: retha.mecikalski@nsstc.uah.edu
Save
  • Barth, M. C., and Coauthors, 2015: The Deep Convective Clouds and Chemistry (DC3) Field Campaign. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-13-00290.1, in press.

    • Search Google Scholar
    • Export Citation
  • Barthe, C., and M. C. Barth, 2008: Evaluation of a new lightning-produced NOx parameterization for cloud resolving models and its associated uncertainties. Atmos. Chem. Phys., 8, 4691–4710, doi:10.5194/acp-8-4691-2008.

    • Search Google Scholar
    • Export Citation
  • Barthe, C., W. Deierling, and M. C. Barth, 2010: Estimation of total lightning from various storm parameters: A cloud-resolving model study. J. Geophys. Res., 115, D24202, doi:10.1029/2010JD014405.

    • Search Google Scholar
    • Export Citation
  • Biagi, C. J., K. L. Cummins, K. E. Kehoe, and E. P. Krider, 2007: National Lightning Detection Network (NLDN) performance in southern Arizona, Texas, and Oklahoma in 2003–2004. J. Geophys Res.,112, D05208, doi:10.1029/2006JD007341.

  • Boccippio, D. J., K. L. Cummins, H. J. Christian, and S. J. Goodman, 2001: Combined satellite- and surface-based estimation of the intracloud–cloud-to-ground lightning ratio over the continental United States. Mon. Wea. Rev., 129, 108–122, doi:10.1175/1520-0493(2001)129<0108:CSASBE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar Principles and Applications. Cambridge University Press, 636 pp.

  • Bringi, V. N., K. Knupp, A. Detwiler, L. Liu, I. J. Caylor, and R. A. Black, 1997: Evolution of a Florida thunderstorm during the Convection and Precipitation/Electrification Experiment: The case of 9 August 1991. Mon. Wea. Rev., 125, 2131–2160, doi:10.1175/1520-0493(1997)125<2131:EOAFTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., T. D. Keenan, and V. Chandrasekar, 2001: Correcting C-Band radar reflectivity and differential reflectivity data for rain attenuation: A self-consistent method with constraints. IEEE Trans. Geosci. Remote Sens., 39, 1906–1915, doi:10.1109/36.951081.

    • Search Google Scholar
    • Export Citation
  • Bruning, E. C., and D. R. MacGorman, 2013: Theory and observations of controls on lightning flash size spectra. J. Atmos. Sci., 70, 4012–4029, doi:10.1175/JAS-D-12-0289.1.

    • Search Google Scholar
    • Export Citation
  • Bruning, E. C., W. D. Rust, T. J. Schuur, D. R. MacGorman, P. R. Krehbiel, and W. Rison, 2007: Electrical and polarimetric radar observations of a multicell storm in TELEX. Mon. Wea. Rev., 135, 2525–2544, doi:10.1175/MWR3421.1.

    • Search Google Scholar
    • Export Citation
  • Bruning, E. C., W. D. Rust, D. R. MacGorman, M. I. Biggerstaff, and T. J. Schuur, 2010: Formation of charge structures in a supercell. Mon. Wea. Rev., 138, 3740–3761, doi:10.1175/2010MWR3160.1.

    • Search Google Scholar
    • Export Citation
  • Byers, H. R., and R. R. Braham Jr., 1948: Thunderstorm structure and circulation. J. Meteor., 5, 71–86, doi:10.1175/1520-0469(1948)005<0071:TSAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Calhoun, K. M., D. R. MacGorman, C. L. Ziegler, and M. I. Biggerstaff, 2013: Evolution of lightning activity and storm charge relative to dual-Doppler analysis of a high-precipitation supercell storm. Mon. Wea. Rev., 141, 2199–2223, doi:10.1175/MWR-D-12-00258.1.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., and S. A. Rutledge, 1996: A multiparameter radar case study of the microphysical and kinematic evolution of a lightning producing storm. Meteor. Atmos. Phys., 59, 33–64, doi:10.1007/BF01032000.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., and S. A. Rutledge, 2000: The relationship between precipitation and lightning in tropical island convection: A C-band polarimetric radar study. Mon. Wea. Rev., 128, 2687–2710, doi:10.1175/1520-0493(2000)128<2687:TRBPAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., M. J. Murphy, T. L. McCormic, and N. W. S. Demetriades, 2005: Lightning location relative to storm structure in a leading-line, trailing-stratiform mesoscale convective system. J. Geophys. Res., 110, D03105, doi:10.1029/2003JD004371.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., A. L. Bain, and R. Matthee, 2014a: Kinematic and microphysical control of lightning in multicell convection over Alabama during DC3. 23rd Int. Lightning Detection Conf./Fifth Int. Lightning Meteorology Conf., Tucson, AZ, Vaisala, 10 pp.

  • Carey, L. D., W. Koshak, H. Petersen, R. Matthee, and A. L. Bain, 2014b: The kinematic and microphysical control of lightning rate, extent and NOX production. Extended Abstracts, 15th Int. Conf. on Atmospheric Electricity (ICAE), Norman, OK, NOAA/National Severe Storms Laboratory and the College of Atmospheric and Geographic Sciences, University of Oklahoma, 20 pp. [Available online at http://www.nssl.noaa.gov/users/mansell/icae2014/preprints/Carey_61.pdf.]

  • Conway, J. W., and D. S. Zrnić, 1993: A study of embryo production and hail growth using dual-Doppler and multiparameter radars. Mon. Wea. Rev., 121, 2511–2528, doi:10.1175/1520-0493(1993)121<2511:ASOEPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Rev., 87, 367–374, doi:10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., and M. J. Murphy, 2009: An overview of lightning locating systems: History, techniques, and uses, with an in-depth look at the U.S. NLDN. IEEE Trans. Electromagn. Compat., 51, 499–518, doi:10.1109/TEMC.2009.2023450.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., M. J. Murphy, E. A. Bardo, W. L. Hiscox, R. B. Pyle, and A. E. Pifer, 1998: A combined TOA/MDF technology upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res., 103, 9035–9044, doi:10.1029/98JD00153.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., J. A. Cramer, C. J. Biaji, E. P. Krider, J. Jerauld, M. A. Uman, and V. A. Rakov, 2006: The U.S. National Lightning Detection Network: Post-upgrade status. Second Conf. on Meterological Applications of Lightning Data, Atlanta, GA, Amer. Meteor. Soc., 6.1. [Available online at https://ams.confex.com/ams/Annual2006/techprogram/paper_105142.htm.]

  • DeCaria, A. J., K. E. Pickering, G. L. Stenchikov, J. R. Scala, J. L. Stith, J. E. Dye, B. A. Ridley, and P. Laroche, 2000: A cloud-scale model study of lightning-generated NOX in an individual thunderstorm during STERAO-A. J. Geophys. Res., 105, 11 601–11 616, doi:10.1029/2000JD900033.

    • Search Google Scholar
    • Export Citation
  • DeCaria, A. J., K. E. Pickering, G. L. Stenchikov, and L. E. Ott, 2005: Lightning-generated NOX and its impact on tropospheric ozone production: A three-dimensional modeling study of a Stratosphere-Troposphere Experiment: Radiation, Aerosols and Ozone (STERAO-A) thunderstorm. J. Geophys. Res., 110, D14303, doi:10.1029/2004JD005556.

    • Search Google Scholar
    • Export Citation
  • Deierling, W., and W. A. Petersen, 2008: Total lightning activity as an indicator of updraft characteristics. J. Geophys. Res., 113, D16210, doi:10.1029/2007JD009598.

    • Search Google Scholar
    • Export Citation
  • Deierling, W., W. A. Petersen, J. Lantham, S. Ellis, and H. J. Christian Jr., 2008: The relationship between lightning activity and ice fluxes in thunderstorms. J. Geophys. Res., 113, D15210, doi:10.1029/2007JD009700.

    • Search Google Scholar
    • Export Citation
  • Dye, J. E., and J. C. Willett, 2007: Observed enhancement of reflectivity and the electric field in long-lived Florida anvils. Mon. Wea. Rev., 135, 3362–3380, doi:10.1175/MWR3484.1.

    • Search Google Scholar
    • Export Citation
  • Dye, J. E., and Coauthors, 2000: An overview of the Stratospheric-Tropospheric Experiment: Radiation, Aerosols, and Ozone (STERAO)-Deep convective experiment with results for the July 10, 1996 storm. J. Geophys. Res., 105, 10 023–10 045, doi:10.1029/1999JD901116.

    • Search Google Scholar
    • Export Citation
  • Dye, J. E., and Coauthors, 2007: Electric fields, cloud microphysics, and reflectivity in anvils of Florida thunderstorms. J. Geophys. Res., 112, D11215, doi:10.1029/2006JD007550.

    • Search Google Scholar
    • Export Citation
  • Ely, B. L., R. E. Orville, L. D. Carey, and C. L. Hodapp, 2008: Evolution of the total lightning structure in a leading-line, trailing-stratiform mesoscale convective system over Houston, Texas. J. Geophys. Res., 113, D08114, doi:10.1029/2007JD008445.

  • Fleenor, S. A., C. J. Biagi, K. L. Cummins, E. P. Krider, and X.-M. Shao, 2009: Characteristics of cloud-to-ground lightning in warm-season thunderstorms in the Great Plains. Atmos. Res., 91, 333–352, doi:10.1016/j.atmosres.2008.08.011.

    • Search Google Scholar
    • Export Citation
  • Gao, J., M. Xue, A. Shapiro, and K. K. Droegemeier, 1999: A variational method for the analysis of three-dimensional wind fields from two Doppler radars. Mon. Wea. Rev., 127, 2128–2142, doi:10.1175/1520-0493(1999)127<2128:AVMFTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gatlin, P. N., and S. J. Goodman, 2010: A total lightning trending algorithm to identify severe thunderstorms. J. Atmos. Oceanic Technol., 27, 3–22, doi:10.1175/2009JTECHA1286.1.

    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., D. E. Buechler, P. D. Wright, and W. D. Rust, 1988: Lightning and precipitation history of a microburst-producing storm. Geophys. Res. Lett., 15, 1185–1188, doi:10.1029/GL015i011p01185.

    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., and Coauthors, 2005: The North Alabama Lightning Mapping Array: Recent severe storm observations and future prospects. Atmos. Res., 76, 423–437, doi:10.1016/j.atmosres.2004.11.035.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and A. G. Palmer, 1986: Relationships for deriving thunderstorm anvil ice mass for CCOPE storm water budget estimates. J. Climate Appl. Meteor., 25, 691–702, doi:10.1175/1520-0450(1986)025<0691:RFDTAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hodapp, C. L., L. D. Carey, and R. E. Orville, 2008: Evolution of radar reflectivity and total lightning characteristics of the 21 April 2006 mesoscale convective system over Texas. Atmos. Res., 89, 113–137, doi:10.1016/j.atmosres.2008.01.007.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78, 2179–2196, doi:10.1175/1520-0477(1997)078<2179:SPIROC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hubbert, J. C., V. N. Bringi, L. D. Carey, and S. Bolen, 1998: CSU-CHILL polarimetric radar measurements from a severe hail storm in eastern Colorado. J. Appl. Meteor., 37, 749–775, doi:10.1175/1520-0450(1998)037<0749:CCPRMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., J. W. F. Goddard, and S. M. Cherry, 1987: Polarization radar studies of precipitation development in convective storms. Quart. J. Roy. Meteor. Soc., 113, 469–489, doi:10.1002/qj.49711347604.

    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., M. J. Murphy, and E. P. Krider, 1996: Multiple-parameter radar observations of isolated Florida thunderstorms during the onset of electrification. J. Appl. Meteor., 35, 343–354, doi:10.1175/1520-0450(1996)035<0343:MPROOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koshak, W., H. Peterson, A. Biazar, M. Khan, and L. Wang, 2014: The NASA Lightning Oxides Model (LNOM): Application to air quality modeling. Atmos. Res., 135–136, 363–369, doi:10.1016/j.atmosres.2012.12.015.

  • Koshak, W., and Coauthors, 2004: North Alabama Lightning Mapping Array (LMA): VHF source retrieval algorithm and error analyses. J. Atmos. Oceanic Technol., 21, 543–558, doi:10.1175/1520-0426(2004)021<0543:NALMAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kuhlman, K. M., C. L. Ziegler, E. R. Mansell, D. R. MacGorman, and J. M. Straka, 2006: Numerically simulated electrification and lightning of the 29 June 2000 steps supercell storm. Mon. Wea. Rev., 134, 2734–2757, doi:10.1175/MWR3217.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., S. M. Ganson, and A. V. Ryzhkov, 2012: Raindrop freezing in deep convective updrafts: A microphysical and polarimetric model. J. Atmos. Sci., 69, 3471–3490, doi:10.1175/JAS-D-12-067.1.

    • Search Google Scholar
    • Export Citation
  • Lamarque, J.-F., G. P. Brasseur, P. G. Hess, and J.-F. Müller, 1996: Three-dimensional study of the relative contributions of the different nitrogen sources in the troposphere. J. Geophys. Res., 101, 22 955–22 968, doi:10.1029/96JD02160.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., and S. A. Rutledge, 2002: Relationships between convective storm kinematics, precipitation, and lightning. Mon. Wea. Rev., 130, 2492–2506, doi:10.1175/1520-0493(2002)130<2492:RBCSKP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Latham, J., A. M. Blyth, H. J. Christian Jr., W. Deierling, and A. M. Gadian, 2004: Determination of precipitation rates and yields from lightning measurements. J. Hydrol., 288, 13–19, doi:10.1016/j.jhydrol.2003.11.009.

    • Search Google Scholar
    • Export Citation
  • Lee, W., C. Walther, and R. Oye, 1994: Doppler Radar Data Exchange format DORADE. NCAR Tech. Note NCAR/TN-4031IA, 18 pp.

  • Loehrer, S. M., T. A. Edmands, and J. A. Moore, 1996: TOGA COARE upper-air sounding data archive: Development and quality control procedures. Bull. Amer. Meteor. Soc., 77, 2651–2671, doi:10.1175/1520-0477(1996)077<2651:TCUASD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lund, N. R., D. R. MacGorman, T. J. Schuur, M. I. Biggerstaff, and W. D. Rust, 2009: Relationship between lightning location and polarimetric radar signatures in a small mesoscale convective system. Mon. Wea. Rev., 137, 4151–4170, doi:10.1175/2009MWR2860.1.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and Coauthors, 2008: TELEX: The Thunderstorm Electrification and Lightning Experiment. Bull. Amer. Meteor. Soc., 89, 997–1013, doi:10.1175/2007BAMS2352.1.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., and C. L. Ziegler, 2013: Aerosol effects on simulated storm electrification and precipitation in a two-moment bulk microphysics model. J. Atmos. Sci., 70, 2032–2050, doi:10.1175/JAS-D-12-0264.1.

    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., Jr., J. C. Bailey, J. Hall, S. J. Goodman, R. J. Blakeslee, and D. E. Buechler, 2005: A flash clustering algorithm for North Alabama Lightning Mapping Array data. Conf. on Meteorological Applications of Lightning Data, San Diego, CA, Amer. Meteor. Soc., 5.3. [Available online at https://ams.confex.com/ams/Annual2005/techprogram/paper_84373.htm.]

  • McCaul, E. W., Jr., S. J. Goodman, K. M. LaCasse, and D. J. Cecil, 2009: Forecasting lightning threat using cloud-resolving model simulations. Wea. Forecasting, 24, 709–729, doi:10.1175/2008WAF2222152.1.

    • Search Google Scholar
    • Export Citation
  • Miller, L. J., and T. Frederick, 1998: Earth Observation Laboratory’s Radar Data Analysis Tools. Accessed 1 September 2012. [Available online at https://wiki.ucar.edu/display/raygridding/home.]

  • Murphy, M. J., 2006: When flash algorithms go bad. 19th Int. Lightning Detection Conf./First Int. Lightning Meteorology Conf., Tucson, AZ, Vaisala, 6 pp.

  • NWS Radar Operations Center, 2013: Radar Operations Center. Accessed 23 October 2013. [Available online at http//www.roc.noaa.gov.]

  • Ott, L. E., K. E. Pickering, G. Stenchikov, H. Huntrieser, and U. Schumann, 2007: Effects of lightning NOX production during the 21 July European Lightning Nitrogen Oxides Project storm studied with a three-dimensional cloud-scale chemical transport model. J. Geophys. Res., 112, D05307, doi:10.1029/2006JD007365.

    • Search Google Scholar
    • Export Citation
  • Oye, R., C. Mueller, and S. Smith, 1995: Software for radar translation, visualization, editing, and interpolation. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 359–361.

  • Petersen, W. A., 1997: Multi-scale process studies in the tropics: Results from lightning observations. Ph.D. dissertation, Colorado State University, 354 pp.

  • Petersen, W. A., and Coauthors, 2005: The UAH-NSSTC/WHNT ARMOR C-Band dual-polarimetric radar: A unique collaboration in research, education and technology transfer. 32nd Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., 12R.4. [Available online at https://ams.confex.com/ams/32Rad11Meso/techprogram/paper_96524.htm.]

  • Pickering, K. E., Y. Wang, W.-K. Tao, C. Price, and J.-F. Mueller, 1998: Vertical distributions of lightning NOx for use in regional and global transport models. J. Geophys. Res., 103, 31 203–31 216, doi:10.1029/98JD02651.

    • Search Google Scholar
    • Export Citation
  • Price, C., J. Penner, and M. Prather, 1997: NOx from lightning, 1, Global distribution based on lightning physics. J. Geophys. Res., 102, 5929–5941, doi:10.1029/96JD03504.

    • Search Google Scholar
    • Export Citation
  • Rison, W., R. J. Thomas, P. R. Krehbiel, T. Hamlin, and J. Harlin, 1999: A GPS-based three-dimensional lightning mapping system: Initial observations in central New Mexico. Geophys. Res. Lett., 26, 3573–3576, doi:10.1029/1999GL010856.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463–485, doi:10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rust, W. D., and Coauthors, 2005: Inverted-polarity electrical structures in thunderstorms in the Severe Thunderstorm Electrification and Precipitation Study (STEPS). Atmos. Res., 76, 247–271, doi:10.1016/j.atmosres.2004.11.029.

    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., 1994: Thunderstorm electrification laboratory experiments and charging mechanisms. J. Geophys. Res., 99, 10 773–10 779, doi:10.1029/93JD01624.

    • Search Google Scholar
    • Export Citation
  • Schultz, C. J., W. A. Petersen, and L. D. Carey, 2009: Preliminary development and evaluation of lightning jump algorithms for the real-time detection of severe weather. J. Appl. Meteor. Climatol., 48, 2543–2563, doi:10.1175/2009JAMC2237.1.

    • Search Google Scholar
    • Export Citation
  • Shao, X. M., and P. R. Krehbiel, 1996: The spatial and temporal development of intracloud lightning. J. Geophys. Res., 101, 26 641–26 668, doi:10.1029/96JD01803.

    • Search Google Scholar
    • Export Citation
  • Smith, P. L., 1984: Equivalent radar reflectivity factors for snow and ice particles. J. Climate Appl. Meteor., 23, 1258–1260, doi:10.1175/1520-0450(1984)023<1258:ERRFFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, P. L., D. J. Musil, A. G. Detwiler, and R. Ramachandran, 1999: Observations of mixed-phase precipitation within a CaPE thunderstorm. J. Appl. Meteor., 38, 145–155, doi:10.1175/1520-0450(1999)038<0145:OOMPPW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35, 1536–1548, doi:10.1175/1520-0469(1978)035<1536:REAACG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., D. S. Zrnic, S. Ellis, R. Oye, and A. V. Ryzhkov, 1999: Cloud microphysics retrievals using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381–388, doi:10.1175/1520-0477(1999)080<0381:CMRUSB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, T., A. W. DeSilva, G. C. Goldenbaum, and R. R. Dickerson, 1998: Nitric oxide production by simulated lightning: Dependence on current, energy, and pressure. J. Geophys. Res., 103, 19 149–19 159, doi:10.1029/98JD01356.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1984: The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea. Rev., 112, 2479–2498, doi:10.1175/1520-0493(1984)112<2479:TSACON>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weiss, S. A., W. D. Rust, D. R. MacGorman, E. C. Bruning, and P. R. Krehbiel, 2008: Evolving complex electrical structures of the STEPS 25 June 2000 multicell storm. Mon. Wea. Rev., 136, 741–756, doi:10.1175/2007MWR2023.1.

    • Search Google Scholar
    • Export Citation
  • Weiss, S. A., D. R. MacGorman, and K. M. Calhoun, 2012: Lightning in the anvils of supercell thunderstorms. Mon. Wea. Rev., 140, 2064–2079, doi:10.1175/MWR-D-11-00312.1.

    • Search Google Scholar
    • Export Citation
  • Wiens, K. C., S. A. Rutledge, and S. A. Tessendorf, 2005: The 29 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure. J. Atmos. Sci., 62, 4151–4177, doi:10.1175/JAS3615.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 627 pp.

  • Zipser, E. J., and K. R. Lutz, 1994: The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability? Mon. Wea. Rev., 122, 1751–1759, doi:10.1175/1520-0493(1994)122<1751:TVPORR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1458 712 340
PDF Downloads 500 75 8