Evaluation of Submonthly Precipitation Forecast Skill from Global Ensemble Prediction Systems

Shuhua Li International Research Institute for Climate and Society, The Earth Institute at Columbia University, Palisades, New York

Search for other papers by Shuhua Li in
Current site
Google Scholar
PubMed
Close
and
Andrew W. Robertson International Research Institute for Climate and Society, The Earth Institute at Columbia University, Palisades, New York

Search for other papers by Andrew W. Robertson in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The prediction skill of precipitation at submonthly time scales during the boreal summer season is investigated based on hindcasts from three global ensemble prediction systems (EPSs). The results, analyzed for lead times up to 4 weeks, indicate encouraging correlation skill over some regions, particularly over the Maritime Continent and the equatorial Pacific and Atlantic Oceans. The hindcasts from all three models correspond to high prediction skill over the first week compared to the following three weeks. The ECMWF forecast system tends to yield higher prediction skill than the other two systems, in terms of both correlation and mean squared skill score. However, all three systems are found to exhibit large conditional biases in the tropics, highlighted using the mean squared skill score.

The sources of submonthly predictability are examined in the ECMWF hindcasts over the Maritime Continent in three typical years of contrasting ENSO phase, with a focus on the combined impact of the intraseasonal MJO and interannual ENSO. Rainfall variations over Borneo in the ENSO-neutral year are found to correspond well with the dominant MJO phase. The contribution of ENSO becomes substantial in the two ENSO years, but the MJO impact can become dominant when the MJO occurs in phases 2–3 during El Niño or in phases 5–6 during the La Niña year. These results support the concept that “windows of opportunity” of high forecast skill exist as a function of ENSO and the MJO in certain locations and seasons, which may lead to subseasonal-to-seasonal forecasts of substantial societal value in the future.

Corresponding author address: Andrew W. Robertson, IRI—Monell 230, 61 Route 9W, Palisades, NY 10964. E-mail: awr@iri.columbia.edu

Abstract

The prediction skill of precipitation at submonthly time scales during the boreal summer season is investigated based on hindcasts from three global ensemble prediction systems (EPSs). The results, analyzed for lead times up to 4 weeks, indicate encouraging correlation skill over some regions, particularly over the Maritime Continent and the equatorial Pacific and Atlantic Oceans. The hindcasts from all three models correspond to high prediction skill over the first week compared to the following three weeks. The ECMWF forecast system tends to yield higher prediction skill than the other two systems, in terms of both correlation and mean squared skill score. However, all three systems are found to exhibit large conditional biases in the tropics, highlighted using the mean squared skill score.

The sources of submonthly predictability are examined in the ECMWF hindcasts over the Maritime Continent in three typical years of contrasting ENSO phase, with a focus on the combined impact of the intraseasonal MJO and interannual ENSO. Rainfall variations over Borneo in the ENSO-neutral year are found to correspond well with the dominant MJO phase. The contribution of ENSO becomes substantial in the two ENSO years, but the MJO impact can become dominant when the MJO occurs in phases 2–3 during El Niño or in phases 5–6 during the La Niña year. These results support the concept that “windows of opportunity” of high forecast skill exist as a function of ENSO and the MJO in certain locations and seasons, which may lead to subseasonal-to-seasonal forecasts of substantial societal value in the future.

Corresponding author address: Andrew W. Robertson, IRI—Monell 230, 61 Route 9W, Palisades, NY 10964. E-mail: awr@iri.columbia.edu
Save
  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, doi:10.1038/news011025-4.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and M. K. Tippett, 2013: Predictions of Nino3.4 SST in CFSv1 and CFSv2: A diagnostic comparison. Climate Dyn., 41, 16151633, doi:10.1007/s00382-013-1845-2.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and J. Shukla, 1981: Predictability of monsoons. Monsoon Dynamics, J. Lighthill and R. P. Pearce, Eds., Cambridge University Press, 99–109.

  • DelSole, T., and M. K. Tippett, 2007: Predictability: Recent insights from information theory. Rev. Geophys., 45, RG4002, doi:10.1029/2006RG000202.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., and D. A. Mayer, 1997: Tropical Atlantic sea surface temperature variability and its relation to El Niño–Southern Oscillation. J. Geophys. Res., 102, 929945, doi:10.1029/96JC03296.

    • Search Google Scholar
    • Export Citation
  • Goddard, L., and Coauthors, 2013: A verification framework for interannnual-to-decadal predictions experiments. Climate Dyn., 40, 245272, doi:10.1007/s00382-012-1481-2.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., M. J. Harrison, R. C. Pacanowski, A. R. Rosati, Z. Liang, M. Schmidt, H. Simmons, and R. Slater, 2004: A technical guide to MOM4. GFDL Ocean Group Tech. Rep. 5, 342 pp. [Available online at www.gfdl.noaa.gov/bibliography/related_files/smg0301.pdf.]

  • Hirons, L. C., P. Inness, F. Vitart, and P. Bechtold, 2013: Understanding advances in the simulation of intraseasonal variability in the ECMWF model. Part I: The representation of the MJO. Quart. J. Roy. Meteor. Soc., 139, 14171426, doi:10.1002/qj.2060.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., D. A. Bailey, and S. Vavrus, 2011: Inherent sea ice predictability in the rapidly changing Arctic environment of the Community Climate System Model, version 3. Climate Dyn., 36, 12391253, doi:10.1007/s00382-010-0792-4.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B., 2013: The potential for skill across the range of the seamless weather-climate prediction problem: A stimulus for our science. Quart. J. Roy. Meteor. Soc., 139, 573584, doi:10.1002/qj.1991.

    • Search Google Scholar
    • Export Citation
  • Japan Meteorological Agency, 2013: Outline of the Operational Numerical Weather Prediction at the Japan Meteorological Agency. Appendix to WMO Tech. Progress Rep. on the Global Data-Processing and Forecasting System and Numerical Weather Prediction, 188 pp. [Available online at http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2013-nwp/index.htm.]

  • Koster, R. D., and Coauthors, 2010: Contribution of land surface initialization to subseasonal forecast skill: First results from a multi-model experiment. Geophys. Res. Lett., 37, L02402, doi:10.1029/2009GL041677.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., M. Chen, and W. Wang, 2011: An analysis of prediction skill of monthly mean climate variability. Climate Dyn., 37, 11191131, doi:10.1007/s00382-010-0901-4.

    • Search Google Scholar
    • Export Citation
  • Lee, J. Y., B. Wang, M. C. Wheeler, X. Fu, D. E. Waliser, and I.-S. Kang, 2013: Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region. Climate Dyn., 40, 493509, doi:10.1007/s00382-012-1544-4.

    • Search Google Scholar
    • Export Citation
  • Li, S., L. Goddard, and D. G. DeWitt, 2008: Predictive skill of AGCM seasonal climate forecasts subject to different SST prediction methodologies. J. Climate, 21, 21692186, doi:10.1175/2007JCLI1660.1.

    • Search Google Scholar
    • Export Citation
  • Lin, H., and Z. Wu, 2011: Contribution of the autumn Tibetan Plateau snow cover to seasonal prediction of North American winter temperature. J. Climate, 24, 28012813, doi:10.1175/2010JCLI3889.1.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1975: Climate predictability. The Physical Basis of Climate and Climate Modelling, GARP Publication Series, Vol. 16, World Meteorological Organization, 133–136.

  • Mason, S. J., L. Goddard, N. E. Graham, E. Yulaeva, L. Sun, and P. A. Arkin, 1999: The IRI seasonal climate prediction system and the 1997/98 El Niño event. Bull. Amer. Meteor. Soc., 80, 18531873, doi:10.1175/1520-0477(1999)080<1853:TISCPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matsueda, S., and Y. Takaya, 2012: Forecast skill of MJO with the JMAs One-month Ensemble Prediction System. WMO CAS/JSC WGNE Research Activity Atmospheric Oceanic Model. [Available online at http://www.wcrp-climate.org/WGNE/BlueBook/2012/documents/author-list.htm.]

  • Moron, V., A. W. Robertson, and M. N. Ward, 2006: Seasonal predictability and spatial coherence of rainfall characteristics in the tropical setting of Senegal. Mon. Wea. Rev., 134, 32483262, doi:10.1175/MWR3252.1.

    • Search Google Scholar
    • Export Citation
  • Moron, V., A. W. Robertson, J.-H. Qian, and M. Ghil, 2015: Weather types across the Maritime Continent: From the diurnal cycle to interannual variations. Frontiers Environ. Sci., 2, 65, doi:10.3389/fenvs.2014.00065.

    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1988: Skill scores based on the mean square error and their relationships to the correlation coefficient. Mon. Wea. Rev., 116, 24172424, doi:10.1175/1520-0493(1988)116<2417:SSBOTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • National Academy of Sciences, 2010: Assessment of Intraseasonal to Interannual Climate Prediction and Predictability. National Research Council, 192 pp.

  • Neena, J. M., J. Y. Lee, D. E. Waliser, B. Wang, and X. Jiang, 2014a: Predictability of the Madden–Julian oscillation in the Intraseasonal Variability Hindcast Experiment (ISVHE). J. Climate, 27, 4531–4543, doi:10.1175/JCLI-D-13-00624.1.

    • Search Google Scholar
    • Export Citation
  • Neena, J. M., X. Jiang, D. E. Waliser, J. Y. Lee, and B. Wang, 2014b: Eastern Pacific intraseasonal variability: A predictability perspective. J. Climate, 27, 8869–8883, doi:10.1175/JCLI-D-14-00336.1.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., and D. L. T. Anderson, 1994: The prospects for seasonal forecasting—A review paper. Quart. J. Roy. Meteor. Soc., 120, 755793, doi:10.1002/qj.49712051802.

    • Search Google Scholar
    • Export Citation
  • Peatman, S. C., A. J. Matthews, and D. P. Stevens, 2014: Propagation of the Madden–Julian Oscillation through the Maritime Continent and scale interaction with the diurnal cycle of precipitation. Quart. J. Roy. Meteor. Soc., 140, 814825, doi:10.1002/qj.2161.

    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., U. Lall, S. E. Zebiak, and L. Goddard, 2004: Improved combination of multiple atmospheric GCM ensembles for seasonal prediction. Mon. Wea. Rev., 132, 27322744, doi:10.1175/MWR2818.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP climate forecast system reanalysis. Bull. Amer. Meteor. Soc., 91, 1015–1057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, doi:10.1175/JCLI-D-12-00823.1.

  • Scaife, A. A., and J. R. Knight, 2008: Ensemble simulations of the cold European winter of 2005/6. Quart. J. Roy. Meteor. Soc., 134, 16471659, doi:10.1002/qj.312.

    • Search Google Scholar
    • Export Citation
  • Stockdale, T. N., 1997: Coupled ocean–atmosphere forecasts in the presence of climate drift. Mon. Wea. Rev., 125, 809818, doi:10.1175/1520-0493(1997)125<0809:COAFIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., A. G. Barnston, and T. DelSole, 2010: Comments on “Finite samples and uncertainty estimates for skill measures for seasonal prediction.” Mon. Wea. Rev., 138, 1487–1493, doi:10.1175/2009MWR3214.1.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., 2004: Monthly forecasting at ECMWF. Mon. Wea. Rev., 132, 27612779, doi:10.1175/MWR2826.1.

  • Vitart, F., 2014: Evolution of ECMWF sub-seasonal forecast skill scores. Quart. J. Roy. Meteor. Soc., 140, 1889–1899, doi:10.1002/qj.2256.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., and F. Molteni, 2010: Simulation of the Madden–Julian Oscillation and its teleconnections in the ECMWF forecast system. Quart. J. Roy. Meteor. Soc., 136, 842855, doi:10.1002/qj.623.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., and Coauthors, 2008: The new VarEPS-monthly forecasting system: A first step towards seamless prediction. Quart. J. Roy. Meteor. Soc., 134, 17891799, doi:10.1002/qj.322.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., A. W. Robertson, and D. L. T. Anderson, 2012: Sub-seasonal to Seasonal Prediction Project: Bridging the gap between weather and climate. WMO Bull., 61, 2328.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., 2011: Predictability and forecasting. Intraseasonal Variability of the Atmosphere-Ocean Climate System, 2nd ed. W. K. M. Lau and D. E. Waliser, Eds., Springer, 433476.

  • Waliser, D. E., K. M. Lau, W. Stern, and C. Jones, 2003a: Potential predictability of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 84, 3350, doi:10.1175/BAMS-84-1-33.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., W. Stern, S. Schubert, and K. M. Lau, 2003b: Dynamic predictability of intraseasonal variability associated with the Asian summer monsoon. Quart. J. Roy. Meteor. Soc., 129, 28972925, doi:10.1256/qj.02.51.

    • Search Google Scholar
    • Export Citation
  • Wang, W., M.-P. Hung, S. J. Weaver, A. Kumar, and X. Fu, 2014: MJO prediction in the NCEP Climate Forecast System version 2. Climate Dyn., 42, 2509–2520, doi:10.1007/s00382-013-1806-9.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • World Meteorological Organization, 2013: Sub-seasonal to seasonal prediction: Research implementation plan, December 2013. WMO, 71 pp. [Available online at http://www.wmo.int/pages/prog/arep/wwrp/new/documents/S2S_Implem_plan_en.pdf.]

  • Xie, P., and P. A. Arkin, 1996: Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J. Climate, 9, 840858, doi:10.1175/1520-0442(1996)009<0840:AOGMPU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, doi:10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yoo, J. H., A. W. Robertson, and I. S. Kang, 2010: Analysis of intraseasonal and interannual variability of the Asian summer monsoon using a hidden Markov model. J. Climate, 23, 54985516, doi:10.1175/2010JCLI3473.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2013: Madden–Julian oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 18491870, doi:10.1175/BAMS-D-12-00026.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, H., M. C. Wheeler, A. H. Sobel, and D. Hudson, 2014: Seamless precipitation prediction skill in the tropics and extratropics from a global model. Mon. Wea. Rev., 142, 15561569, doi:10.1175/MWR-D-13-00222.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2455 918 507
PDF Downloads 1609 225 22