• Aksoy, A., D. Dowell, and C. Snyder, 2009: A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part I: Storm-scale analyses. Mon. Wea. Rev., 137, 18051824, doi:10.1175/2008MWR2691.1.

    • Search Google Scholar
    • Export Citation
  • Brandes, E., G. Zhang, and J. Vivekanandan, 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteor., 41, 674685, doi:10.1175/1520-0450(2002)041<0674:EIREWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bringi, V., V. Chandrasekar, J. Hubbert, E. Gorgucci, W. L. Randeu, and M. Schoenhuber, 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60, 354365, doi:10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carey, L., S. Rutledge, D. Ahijevych, and T. Keenan, 2000: Correcting propagation effects in C-band polarimetric radar observations of tropical convection using differential propagation phase. J. Appl. Meteor., 39, 14051433, doi:10.1175/1520-0450(2000)039<1405:CPEICB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Caya, A., J. Sun, and C. Snyder, 2005: A comparison between the 4DVAR and the ensemble Kalman filter techniques for radar data assimilation. Mon. Wea. Rev., 133, 30813094, doi:10.1175/MWR3021.1.

    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., V. Bringi, N. Balakrishnan, and D. S. Zrnić, 1990: Error structure of multiparameter radar and surface measurements of rainfall. Part III: Specific differential phase. J. Atmos. Oceanic Technol., 7, 621629, doi:10.1175/1520-0426(1990)007<0621:ESOMRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dowell, C., and L. Wicker, 2009: Additive noise for storm-scale ensemble data assimilation. J. Atmos. Oceanic Technol., 26, 911927, doi:10.1175/2008JTECHA1156.1.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gao, J., M. Xue, K. Brewster, and K. K. Droegemeier, 2004: A three-dimensional variational data analysis method with recursive filter for Doppler radars. J. Atmos. Oceanic Technol., 21, 457469, doi:10.1175/1520-0426(2004)021<0457:ATVDAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Haario, H., E. Saksman, and J. Tamminen, 1999: Adaptive proposal distribution for random walk Metropolis algorithm. Comput. Stat., 14, 375395, doi:10.1007/s001800050022.

    • Search Google Scholar
    • Export Citation
  • Hall, M., J. Goddard, and S. Cherry, 1984: Identification of hydrometeors and other targets by dual-polarization radar. Radio Sci., 19, 132140, doi:10.1029/RS019i001p00132.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, P. R. Field, S. L. Durden, J. L. Smith, J. E. Dye, W. Hall, and C. A. Grainger, 2002: Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59, 34573491, doi:10.1175/1520-0469(2002)059<3457:OAPOPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., K. S. Sunny Lim, J. H. Kim, J. O. Jade Lim, and J. Dudhia, 2009: Sensitivity study of cloud-resolving convective simulations with WRF using two bulk microphysical parameterizations: Ice-phase microphysics versus sedimentation effects. J. Appl. Meteor. Climatol., 48, 6176, doi:10.1175/2008JAMC1960.1.

    • Search Google Scholar
    • Export Citation
  • Hu, M., M. Xue, J. Gao, and K. Brewster, 2006: 3DVAR and cloud analysis with WSR-88D level-II data for the prediction of Fort Worth tornadic thunderstorms. Part II: Impact of radial velocity analysis via 3DVAR. Mon. Wea. Rev., 134, 699721, doi:10.1175/MWR3093.1.

    • Search Google Scholar
    • Export Citation
  • Jung, Y., M. Xue, G. Zhang, and J. M. Straka, 2008a: Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman filter. Part I: Observation operators for reflectivity and polarimetric variables. Mon. Wea. Rev., 136, 22282245, doi:10.1175/2007MWR2083.1.

    • Search Google Scholar
    • Export Citation
  • Jung, Y., M. Xue, G. Zhang, and J. M. Straka, 2008b: Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman filter. Part II: Impact of polarimetric data on storm analysis. Mon. Wea. Rev., 136, 22462260, doi:10.1175/2007MWR2288.1.

    • Search Google Scholar
    • Export Citation
  • Jung, Y., M. Xue, G. Zhang, and J. M. Straka, 2010: Simulations of polarimetric radar signatures of a supercell storm using a two-moment bulk microphysics scheme. J. Appl. Meteor. Climatol., 49, 146163, doi:10.1175/2009JAMC2178.1.

    • Search Google Scholar
    • Export Citation
  • Kawabata, T., T. Kuroda, H. Seko, and K. Saito, 2011: A cloud-resolving 4DVAR assimilation experiment for a local heavy rainfall event in the Tokyo metropolitan area. Mon. Wea. Rev., 139, 19111931, doi:10.1175/2011MWR3428.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013: Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. J. Oper. Meteor., 1, 226242, doi:10.15191/nwajom.2013.0119.

    • Search Google Scholar
    • Export Citation
  • Li, X., and J. Mecikalski, 2010: Assimilation of the dual-polarization Doppler radar data for a convective storm with a warm-rain radar forward operator. J. Geophys. Res., 115, D16208, doi:10.1029/2009JD013666.

    • Search Google Scholar
    • Export Citation
  • Li, X., and J. Mecikalski, 2012: Impact of the dual-polarization Doppler radar data on two convective storms with a warm-rain radar forward operator. Mon. Wea. Rev., 140, 21472167, doi:10.1175/MWR-D-11-00090.1.

    • Search Google Scholar
    • Export Citation
  • Li, X., and J. Mecikalski, 2013: Evaluation of the sensitivity of the dual-polarization Doppler radar data assimilation to radar forward operator. J. Meteor. Soc. Japan, 91, 287304, doi:10.2151/jmsj.2013-304.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E., S. Taubman, P. Brown, M. Iacono, and S. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Posselt, D. J., 2013: Markov chain Monte Carlo methods: Theory and applications. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, 2nd ed. S. K. Park and L. Xu, Eds., Springer, 59–87.

  • Posselt, D. J., and T. Vukicevic, 2010: Robust characterization of model physics uncertainty for simulations of deep moist convection. Mon. Wea. Rev., 138, 15131535, doi:10.1175/2009MWR3094.1.

    • Search Google Scholar
    • Export Citation
  • Posselt, D. J., and C. H. Bishop, 2012: Nonlinear parameter estimation: Comparison of an ensemble Kalman smoother with a Markov chain Monte Carlo algorithm. Mon. Wea. Rev., 140, 19571974, doi:10.1175/MWR-D-11-00242.1.

    • Search Google Scholar
    • Export Citation
  • Posselt, D. J., and G. G. Mace, 2014: MCMC-based assessment of the error characteristics of a combined radar-passive microwave cloud property retrieval. J. Appl. Meteor. Climatol., 53, 20342057, doi:10.1175/JAMC-D-13-0237.1.

    • Search Google Scholar
    • Export Citation
  • Posselt, D. J., T. S. L’Ecuyer, and G. L. Stephens, 2008: Exploring the error characteristics of thin ice cloud property retrievals using a Markov chain Monte Carlo algorithm. J. Geophys. Res., 113, D24206, doi:10.1029/2008JD010832.

    • Search Google Scholar
    • Export Citation
  • Posselt, D. J., D. Hodyss, and C. H. Bishop, 2014: Errors in ensemble Kalman smoother estimates of cloud microphysical parameters. Mon. Wea. Rev., 142, 16311654, doi:10.1175/MWR-D-13-00290.1.

    • Search Google Scholar
    • Export Citation
  • Rabier, F., H. Järvinen, E. Klinker, J.-F. Mahfouf, and A. Simmons, 2000: The ECMWF operational implementation of four-dimensional variational assimilation. I: Experimental results with simplified physics. Quart. J. Roy. Meteor. Soc., 126, 11431170, doi:10.1002/qj.49712656415.

    • Search Google Scholar
    • Export Citation
  • Rinehart, R. E., 1997: Radar for Meteorologists. Rinehart Publications, 428 pp.

  • Rodgers, C. D., 2000: Inverse Methods for Atmospheric Sounding: Theory and Practice. World Scientific, 240 pp.

  • Roy, S. S., R. K. Datta, R. C. Bhatia, and A. K. Sharma, 2005: Drop size distributions of tropical rain over south India. Geofizika, 22, 105130.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., D. Zrnić, and B. Gordon, 1998: Polarimetric method for ice water content determination. J. Appl. Meteor., 37, 125134, doi:10.1175/1520-0450(1998)037<0125:PMFIWC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sachidananda, M., and D. S. Zrnić, 1987: Rain rate estimates from differential polarization measurements. J. Atmos. Oceanic Technol., 4, 588598, doi:10.1175/1520-0426(1987)004<0588:RREFDP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schenkman, A., M. Xue, A. Shapiro, K. Brewster, and J. Gao, 2011: Impact of CASA radar and Oklahoma mesonet data assimilation on the analysis and prediction of tornadic mesovortices in a MCS. Mon. Wea. Rev., 139, 34223445, doi:10.1175/MWR-D-10-05051.1.

    • Search Google Scholar
    • Export Citation
  • Seliga, T., and V. Bringi, 1976: Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteor., 15, 6976, doi:10.1175/1520-0450(1976)015<0069:PUORDR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3_bw.pdf.]

  • Straka, J., D. Zrnić, and A. Ryzhkov, 2000: Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteor.,39, 1341–1372, doi:10.1175/1520-0450(2000)039<1341:BHCAQU>2.0.CO;2.

  • Sun, J., 2005: Initialization and numerical forecasting of a supercell storm observed during STEPS. Mon. Wea. Rev., 133, 793813, doi:10.1175/MWR2887.1.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and N. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54, 16421661, doi:10.1175/1520-0469(1997)054<1642:DAMRFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and N. Crook, 1998: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part II: Retrieval experiments of an observed Florida convective storm. J. Atmos. Sci., 55, 835852, doi:10.1175/1520-0469(1998)055<0835:DAMRFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tamminen, J., and E. Kyrölä, 2001: Bayesian solution for nonlinear and non-Gaussian inverse problems by Markov chain Monte Carlo method. J. Geophys. Res., 106, 14 37714 390, doi:10.1029/2001JD900007.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor., 35, 355371, doi:10.1175/1520-0450(1996)035<0355:EFTRSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tong, M., and M. Xue, 2008: Simultaneous estimation of microphysical parameters and atmospheric state with simulated radar data and ensemble square root Kalman filter. Part I: Sensitivity analysis and parameter identifiability. Mon. Wea. Rev., 136, 16301648, doi:10.1175/2007MWR2070.1.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., S. Ellis, R. Oye, D. Zrnić, A. Ryzhkov, and J. Straka, 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381388, doi:10.1175/1520-0477(1999)080<0381:CMRUSB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., G. Zhang, and E. Brandes, 2004: Polarimetric radar estimators based on a constrained gamma drop size distribution model. J. Appl. Meteor., 43, 217230, doi:10.1175/1520-0450(2004)043<0217:PREBOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vukicevic, T., and D. Posselt, 2008: Analysis of the impact of model nonlinearities in inverse problem solving. J. Atmos. Sci., 65, 28032823, doi:10.1175/2008JAS2534.1.

    • Search Google Scholar
    • Export Citation
  • Wang, H., J. Sun, S. Fan, and X.-Y. Huang, 2013: Indirect assimilation of radar reflectivity with WRF 3D-Var and its impact on prediction of four summertime convective events. J. Appl. Meteor. Climatol., 52, 889902, doi:10.1175/JAMC-D-12-0120.1.

    • Search Google Scholar
    • Export Citation
  • Wattrelot, E., O. Caumont, and J.-F. Mahfouf, 2014: Operational implementation of the 1D+3D-Var assimilation method of radar reflectivity data in the AROME model. Mon. Wea. Rev., 142, 18521873, doi:10.1175/MWR-D-13-00230.1.

    • Search Google Scholar
    • Export Citation
  • Xiao, Q., Y.-H. Guo, J. Sun, W.-C. Lee, D. M. Barker, and E. Lim, 2007: An approach of radar reflectivity data assimilation and its assessment with the inland QPF of Typhoon Rusa (2002) at landfall. J. Appl. Meteor. Climatol., 46, 1422, doi:10.1175/JAM2439.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., Y. Weng, J. Sippel, Z. Meng, and C. Bishop, 2009: Cloud-resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 137, 21052125, doi:10.1175/2009MWR2645.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., J. Vivekanandan, and E. Brandes, 2001: A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans. Geosci. Remote Sens., 39, 830841, doi:10.1109/36.917906.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D., and A. Ryzhkov, 1996: Advantages of rain measurements using specific differential phase. J. Atmos. Oceanic Technol., 13, 454464, doi:10.1175/1520-0426(1996)013<0454:AORMUS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 214 108 10
PDF Downloads 403 67 10

Assimilation of Dual-Polarization Radar Observations in Mixed- and Ice-Phase Regions of Convective Storms: Information Content and Forward Model Errors

View More View Less
  • 1 University of Michigan, Ann Arbor, Michigan
  • | 2 University of Alabama in Huntsville, Huntsville, Alabama
  • | 3 University of Michigan, Ann Arbor, Michigan, and Cooperative Institute for Meteorological Satellite Studies, Madison, Wisconsin
  • | 4 University of Alabama in Huntsville, Huntsville, Alabama
Restricted access

Abstract

Dual-polarization Doppler radar has proven useful for the estimation of hydrometeor content and the classification of hydrometeor type. Recent studies have leveraged dual-polarization-specific information to produce improved assimilated cloud and precipitation fields from the warm rain (above freezing) portion of deep convective storms. While the strengths of dual-polarization radar observations have been conclusively shown for rain and hail hydrometeors, it is less clear how much information is provided in mixed-phase and ice-only regions.

In this paper, a Markov chain Monte Carlo (MCMC) algorithm is used to examine the information content of dual-polarization-specific variables in the ice-phase region of a convective storm. Results are used to quantify how much information is added by specific differential phase and radar correlation coefficient, as well as how this information is degraded when the assumed particle size distribution and particle density are allowed to vary. It is found that dual-polarization-specific observations (Kdp and ρhv) provide significant information on rimed ice content, and moderate information on pristine ice, especially where snow mass is more than 10% of the total volume hydrometeor mass. There is a significant reduction in information content for rain and a near-complete loss of information for graupel–hail and snow when the particle size distribution and ice particle densities are not well known, and there are systematic changes in radar information gain and loss with changes in hydrometeor mass. The results highlight the need for a thorough exploration of forward model sensitivities prior to performing radar data assimilation.

Corresponding author address: Derek J. Posselt, Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, 2455 Hayward St., Ann Arbor, MI 48109-2143. E-mail: dposselt@umich.edu

Abstract

Dual-polarization Doppler radar has proven useful for the estimation of hydrometeor content and the classification of hydrometeor type. Recent studies have leveraged dual-polarization-specific information to produce improved assimilated cloud and precipitation fields from the warm rain (above freezing) portion of deep convective storms. While the strengths of dual-polarization radar observations have been conclusively shown for rain and hail hydrometeors, it is less clear how much information is provided in mixed-phase and ice-only regions.

In this paper, a Markov chain Monte Carlo (MCMC) algorithm is used to examine the information content of dual-polarization-specific variables in the ice-phase region of a convective storm. Results are used to quantify how much information is added by specific differential phase and radar correlation coefficient, as well as how this information is degraded when the assumed particle size distribution and particle density are allowed to vary. It is found that dual-polarization-specific observations (Kdp and ρhv) provide significant information on rimed ice content, and moderate information on pristine ice, especially where snow mass is more than 10% of the total volume hydrometeor mass. There is a significant reduction in information content for rain and a near-complete loss of information for graupel–hail and snow when the particle size distribution and ice particle densities are not well known, and there are systematic changes in radar information gain and loss with changes in hydrometeor mass. The results highlight the need for a thorough exploration of forward model sensitivities prior to performing radar data assimilation.

Corresponding author address: Derek J. Posselt, Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, 2455 Hayward St., Ann Arbor, MI 48109-2143. E-mail: dposselt@umich.edu
Save