Implementation of Deterministic Weather Forecasting Systems Based on Ensemble–Variational Data Assimilation at Environment Canada. Part II: The Regional System

Jean-François Caron * Data Assimilation and Satellite Meteorology Research Section, Environment Canada, Dorval, Quebec, Canada

Search for other papers by Jean-François Caron in
Current site
Google Scholar
PubMed
Close
,
Thomas Milewski Data Assimilation and Quality Control Development Section, Environment Canada, Dorval, Quebec, Canada

Search for other papers by Thomas Milewski in
Current site
Google Scholar
PubMed
Close
,
Mark Buehner * Data Assimilation and Satellite Meteorology Research Section, Environment Canada, Dorval, Quebec, Canada

Search for other papers by Mark Buehner in
Current site
Google Scholar
PubMed
Close
,
Luc Fillion * Data Assimilation and Satellite Meteorology Research Section, Environment Canada, Dorval, Quebec, Canada

Search for other papers by Luc Fillion in
Current site
Google Scholar
PubMed
Close
,
Mateusz Reszka Data Assimilation and Quality Control Development Section, Environment Canada, Dorval, Quebec, Canada

Search for other papers by Mateusz Reszka in
Current site
Google Scholar
PubMed
Close
,
Stephen Macpherson * Data Assimilation and Satellite Meteorology Research Section, Environment Canada, Dorval, Quebec, Canada

Search for other papers by Stephen Macpherson in
Current site
Google Scholar
PubMed
Close
, and
Judy St-James Data Assimilation and Quality Control Development Section, Environment Canada, Dorval, Quebec, Canada

Search for other papers by Judy St-James in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The modifications to the data assimilation component of the Regional Deterministic Prediction System (RDPS) implemented at Environment Canada operations during the fall of 2014 are described. The main change is the replacement of the limited-area four-dimensional variational data assimilation (4DVar) algorithm for the limited-area analysis and the associated three-dimensional variational data assimilation (3DVar) scheme for the synchronous global driver analysis by the four-dimensional ensemble–variational data assimilation (4DEnVar) scheme presented in the first part of this study. It is shown that a 4DEnVar scheme using global background-error covariances can provide RDPS forecasts that are slightly improved compared to the previous operational approach, particularly during the first 24 h of the forecasts and in the summertime convective regime. Further forecast improvements were also made possible by upgrades in the assimilated observational data and by introducing the improved global analysis presented in the first part of this study in the RDPS intermittent cycling strategy. The computational savings brought by the 4DEnVar approach are also discussed.

Corresponding author address: Jean-François Caron, Meteorological Research Division, Environment Canada, 2121 TransCanada Hwy., Dorval QC H9P 1J3, Canada. E-mail: jean-francois.caron@ec.gc.ca

This article is included in the Sixth WMO Data Assimilation Symposium Special Collection.

Abstract

The modifications to the data assimilation component of the Regional Deterministic Prediction System (RDPS) implemented at Environment Canada operations during the fall of 2014 are described. The main change is the replacement of the limited-area four-dimensional variational data assimilation (4DVar) algorithm for the limited-area analysis and the associated three-dimensional variational data assimilation (3DVar) scheme for the synchronous global driver analysis by the four-dimensional ensemble–variational data assimilation (4DEnVar) scheme presented in the first part of this study. It is shown that a 4DEnVar scheme using global background-error covariances can provide RDPS forecasts that are slightly improved compared to the previous operational approach, particularly during the first 24 h of the forecasts and in the summertime convective regime. Further forecast improvements were also made possible by upgrades in the assimilated observational data and by introducing the improved global analysis presented in the first part of this study in the RDPS intermittent cycling strategy. The computational savings brought by the 4DEnVar approach are also discussed.

Corresponding author address: Jean-François Caron, Meteorological Research Division, Environment Canada, 2121 TransCanada Hwy., Dorval QC H9P 1J3, Canada. E-mail: jean-francois.caron@ec.gc.ca

This article is included in the Sixth WMO Data Assimilation Symposium Special Collection.

Save
  • Baek, S.-J., L. Fillion, K.-S. Chung, and P. Houtekamer, 2014: Environment Canada’s regional ensemble Kalman filter. Sixth EnKF Workshop, Buffalo, NY, Environment Canada, 19 pp. [Available online at http://hfip.psu.edu/fuz4/EnKF2014/EnKF-Day1/Baek-RegionalEnKF_EnKF_Workshop_2014.pdf.]

  • Bélair, S., L.-P. Crevier, J. Mailhot, B. Bilodeau, and Y. Delage, 2003a: Operational implementation of the ISBA land surface scheme in the Canadian regional weather forecast model. Part I: Warm season results. J. Hydrometeor., 4, 352370, doi:10.1175/1525-7541(2003)4<352:OIOTIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bélair, S., R. Brown, J. Mailhot, B. Bilodeau, and L.-P. Crevier, 2003b: Operational implementation of the ISBA land surface scheme in the Canadian regional weather forecast model. Part II: Cold season results. J. Hydrometeor., 4, 371386, doi:10.1175/1525-7541(2003)4<371:OIOTIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., P. L. Houtekamer, C. Charette, H. L. Mitchell, and B. He, 2010a: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part I: Description and single-observation experiments. Mon. Wea. Rev., 138, 15501566, doi:10.1175/2009MWR3157.1.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., P. L. Houtekamer, C. Charette, H. L. Mitchell, and B. He, 2010b: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part II: One-month experiments with real observations. Mon. Wea. Rev., 138, 15671586, doi:10.1175/2009MWR3158.1.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., J. Morneau, and C. Charette, 2013: Four-dimensional ensemble–variational data assimilation for global deterministic weather prediction. Nonlinear Processes Geophys., 20, 669682, doi:10.5194/npg-20-669-2013.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., and Coauthors, 2015: Implementation of deterministic weather forecasting systems based on ensemble–variational data assimilation at Environment Canada. Part I: The global system. Mon. Wea. Rev., 143, 25322559, doi:10.1175/MWR-D-14-00354.1.

    • Search Google Scholar
    • Export Citation
  • Canadian Meteorological Centre, 2014: Changes to the Regional Deterministic Prediction System (RDPS) from version 3.2.1 to 4.0.0. Canadian Meteorological Centre Tech. Note, 40 pp. [Available online at http://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/docs/lib/technote_rdps-400_20141118_e.pdf.]

  • Candille, G., C. Côté, P. L. Houtekamer, and G. Pellerin, 2007: Verification of an ensemble prediction system against observations. Mon. Wea. Rev., 135, 26882699, doi:10.1175/MWR3414.1.

    • Search Google Scholar
    • Export Citation
  • Chang, W., K.-S. Chung, L. Fillion, and S.-J. Baek, 2014: Radar data assimilation in the Canadian high-resolution ensemble Kalman filter system: Performance and verification with real summer cases. Mon. Wea. Rev., 142, 21182138, doi:10.1175/MWR-D-13-00291.1.

    • Search Google Scholar
    • Export Citation
  • Charron, M., and Coauthors, 2012: The stratospheric extension of the Canadian Global Deterministic Medium-Range Weather Forecasting System and its impact on tropospheric forecasts. Mon. Wea. Rev., 140, 19241944, doi:10.1175/MWR-D-11-00097.1.

    • Search Google Scholar
    • Export Citation
  • Côté, J., S. Gravel, A. Méthot, A. Patoine, M. Roch, and A. Staniforth, 1998: The operational CMC–MRB Global Environmental Multiscale (GEM) model. Part I: Design considerations and formulation. Mon. Wea. Rev., 126, 13731395, doi:10.1175/1520-0493(1998)126<1373:TOCMGE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Courtier, P., J.-N. Thépaut, and A. Hollingsworth, 1994: A strategy for operational implementation of 4D-Var using an incremental approach. Quart. J. Roy. Meteor. Soc., 120, 13671387, doi:10.1002/qj.49712051912.

    • Search Google Scholar
    • Export Citation
  • Fillion, L., H. L. Mitchell, H. Ritchie, and A. Staniforth, 1995: The impact of a digital filter finalization technique in a Global Data Assimilation System. Tellus, 47A, 304323, doi:10.1034/j.1600-0870.1995.t01-2-00002.x.

    • Search Google Scholar
    • Export Citation
  • Fillion, L., and Coauthors, 2010: The Canadian Regional Data Assimilation and Forecasting System. Wea. Forecasting, 25, 16451669, doi:10.1175/2010WAF2222401.1.

    • Search Google Scholar
    • Export Citation
  • Girard, C., and Coauthors, 2014: Staggered vertical discretization of the Canadian Environmental Multiscale (GEM) model using a coordinate of the log-hydrostatic-pressure type. Mon. Wea. Rev., 142, 11831196, doi:10.1175/MWR-D-13-00255.1.

    • Search Google Scholar
    • Export Citation
  • Gustafsson, N., and J. Bojarova, 2014: Four-dimensional ensemble variational (4D-En-Var) data assimilation for the High Resolution Limited Area Model (HIRLAM). Nonlinear Processes Geophys., 21, 745762, doi:10.5194/npg-21-745-2014.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., X. Deng, H. L. Mitchell, S.-J. Baek, and N. Gagnon, 2014: Higher resolution in an operational ensemble Kalman filter. Mon. Wea. Rev., 142, 11431162, doi:10.1175/MWR-D-13-00138.1.

    • Search Google Scholar
    • Export Citation
  • Laroche, S., and R. Sarrazin, 2013: Impact of radiosonde balloon drift on numerical weather prediction and verification. Wea. Forecasting, 28, 772782, doi:10.1175/WAF-D-12-00114.1.

    • Search Google Scholar
    • Export Citation
  • Li, Y., X. Wang, and M. Xue, 2012: Assimilation of radar radial velocity data with the WRF hybrid ensemble-3DVAR system for the prediction of Hurricane Ike (2008). Mon. Wea. Rev., 140, 35073524, doi:10.1175/MWR-D-12-00043.1.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and Q. Xiao, 2013: An ensemble-based four-dimensional variational data assimilation scheme. Part III: Antarctic applications with the advanced WRF using real data. Mon. Wea. Rev., 141, 27212739, doi:10.1175/MWR-D-12-00130.1.

    • Search Google Scholar
    • Export Citation
  • Macpherson, S. R., G. Deblonde, J. M. Aparicio, and B. Casati, 2008: Impact of NOAA ground-based GPS observations on the Canadian Regional Analysis and Forecast System. Mon. Wea. Rev., 136, 27272746, doi:10.1175/2007MWR2263.1.

    • Search Google Scholar
    • Export Citation
  • Mason, I. B., 2003: Binary events. Forecast Verification—A Practitioner’s Guide in Atmospheric Science, I. T. Jolliffe and D. B. Stephenson, Eds., Wiley, 37–76.

  • National Weather Service, 2014a: Updates to the Rapid Refresh (RAP) Analysis and Forecast System. NWS National Tech. Implementation Notice 13-38, Accessed 15 May 2015. [Available online at http://www.nws.noaa.gov/os/notification/tin13-38rap_aab.htm.]

  • National Weather Service, 2014b: Changes to the North American Mesoscale (NAM) Analysis and Forecast System. NWS National Tech. Implementation Notice 14-29, Accessed 15 May 2015. [Available online at http://www.nws.noaa.gov/os/notification/tin14-29namcca.htm.]

  • Pan, Y., K. Zhu, M. Xue, X. Wang, M. Hu, S. G. Benjamin, S. S. Weygandt, and J. S. Whitaker, 2014: A GSI-based coupled EnSRF–En3DVar hybrid data assimilation system for the operational Rapid Refresh model: Tests at a reduced resolution. Mon. Wea. Rev., 142, 37563780, doi:10.1175/MWR-D-13-00242.1.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and Z. Liu, 2014: Convection-permitting forecasts initialized with continuously cycling limited-area 3DVAR, ensemble Kalman filter, and “hybrid” variational–ensemble data assimilation systems. Mon. Wea. Rev., 142, 716738, doi:10.1175/MWR-D-13-00100.1.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., Z. Liu, X.-Y. Huang, Y.-H. Kuo, and C.-T. Fong, 2013: Comparing limited-area 3DVAR and hybrid variational–ensemble data assimilation methods for typhoon track forecasts: Sensitivity to outer loops and vortex relocation. Mon. Wea. Rev., 141, 43504372, doi:10.1175/MWR-D-13-00028.1.

    • Search Google Scholar
    • Export Citation
  • Tanguay, M., L. Fillion, E. Lapalme, and M. Lajoie, 2012: Four-dimensional variational data assimilation for the Canadian Regional Deterministic Prediction System. Mon. Wea. Rev., 140, 15171538, doi:10.1175/MWR-D-11-00160.1.

    • Search Google Scholar
    • Export Citation
  • Thomas, S. J., C. Girard, R. Benoit, M. Desgagné, and P. Pellerin, 1998: A new adiabatic kernel for the MC2 model. Atmos.–Ocean, 36, 241270, doi:10.1080/07055900.1998.9649613.

    • Search Google Scholar
    • Export Citation
  • Vaillancourt, P., and Coauthors, 2012: Improvements to the Regional Deterministic Prediction System (RDPS) from version 2.0.0 to version 3.0.0. Canadian Meteorological Centre Tech. Note, 78 pp. [Available online at http://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/docs/lib/op_systems/doc_opchanges/technote_rdps300_20121003_e.pdf.]

  • Wang, X., 2011: Application of the WRF hybrid ETKF–3DVAR data assimilation system for hurricane track forecasts. Wea. Forecasting, 26, 868884, doi:10.1175/WAF-D-10-05058.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X., and T. Lei, 2014: GSI-based four-dimensional ensemble–variational (4DEnsVar) data assimilation: Formulation and single-resolution experiments with real data for NCEP Global Forecast System. Mon. Wea. Rev., 142, 33033325, doi:10.1175/MWR-D-13-00303.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X., D. M. Barker, C. Snyder, and T. M. Hamill, 2008a: A hybrid ETKF–3DVAR data assimilation scheme for the WRF Model. Part I: Observation system simulation experiment. Mon. Wea. Rev., 136, 51165131, doi:10.1175/2008MWR2444.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X., D. M. Barker, C. Snyder, and T. M. Hamill, 2008b: A hybrid ETKF–3DVAR data assimilation scheme for the WRF Model. Part II: Real observation experiments. Mon. Wea. Rev., 136, 51325147, doi:10.1175/2008MWR2445.1.

    • Search Google Scholar
    • Export Citation
  • Wilson, L. J., and M. Vallée, 2003: The Canadian Updateable Model Output Statistics (UMOS) system: Validation against perfect prog. Wea. Forecasting, 18, 288302, doi:10.1175/1520-0434(2003)018<0288:TCUMOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zadra, A., and Coauthors, 2014: Improvements to the Global Deterministic Prediction System (GDPS) (from version 2.2.2 to 3.0.0), and related changes to the Regional Deterministic Prediction System (RDPS) (from version 3.0.0 to 3.1.0). Canadian Meteorological Centre Tech. Note, 88 pp. [Available online at http://collaboration.cmc.ec.gc.ca/cmc/CMOI/product_guide/docs/lib/op_systems/doc_opchanges/technote_gdps300_20130213_e.pdf.]

  • Zhang, F., M. Zhang, and J. Poterjoy, 2013: E3DVar: Coupling an ensemble Kalman filter with three-dimensional variational data assimilation in a limited-area weather prediction model and comparison to E4DVar. Mon. Wea. Rev., 141, 900917, doi:10.1175/MWR-D-12-00075.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, M., and F. Zhang, 2012: E4DVar: Coupling an ensemble Kalman filter with four-dimensional variational data assimilation in a limited-area weather prediction model. Mon. Wea. Rev., 140, 587600, doi:10.1175/MWR-D-11-00023.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2623 1742 1196
PDF Downloads 494 137 8