On the Mechanisms of Rain Formation in an Idealized Supercell Storm

Matthew R. Kumjian Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Matthew R. Kumjian in
Current site
Google Scholar
PubMed
Close
,
Zachary J. Lebo Cooperative Institute for Research in Environmental Sciences, University of Colorado, and NOAA/Earth System Research Laboratory, Chemical Sciences Division, Boulder, Colorado

Search for other papers by Zachary J. Lebo in
Current site
Google Scholar
PubMed
Close
, and
Hughbert C. Morrison Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Hughbert C. Morrison in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Deep convective storms produce raindrops through three mechanisms: condensation and coalescence growth of cloud liquid droplets (i.e., warm processes), melting of ice hydrometeors, and shedding from wet hailstones. To investigate the relative importance of these mechanisms and their contributions to exotic drop size distributions (DSDs) observed near the surface in supercell storms, an idealized simulation of a supercell is performed using a modified version of the Morrison two-moment microphysics scheme. The modified scheme includes separate categories for warm, shed, and melted rain.

Rain originating from melting ice dominates the rain mass at low levels, especially along the right forward-flank precipitation shield, whereas shed-rain drops dominate a region within the left forward flank. Warm rain is only dominant in the upshear portion of the rear flank of the storm at low levels, though it dominates the total rain mass within the main updraft aloft. The warm-rain mass at low levels is associated with strong low-level downdrafts, consistent with previously published hypotheses based on polarimetric radar observations. Raindrops produced via warm processes are smaller on average than those produced by shedding and melting; drops in the latter class tend to be the largest.

Overall, the simulations fail to reproduce the diverse nature of observed supercell DSDs, although the modified microphysics scheme does increase the variability of surface DSDs compared to the Control run. This implies that more sophisticated treatment of rain microphysics is needed to capture the natural variability of supercell DSDs, including the ability to evolve the DSD spectral shape through sedimentation and collisional processes.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Dr. Matthew Kumjian, Department of Meteorology, The Pennsylvania State University, 513 Walker Building, University Park, PA 16801. E-mail: kumjian@psu.edu

Abstract

Deep convective storms produce raindrops through three mechanisms: condensation and coalescence growth of cloud liquid droplets (i.e., warm processes), melting of ice hydrometeors, and shedding from wet hailstones. To investigate the relative importance of these mechanisms and their contributions to exotic drop size distributions (DSDs) observed near the surface in supercell storms, an idealized simulation of a supercell is performed using a modified version of the Morrison two-moment microphysics scheme. The modified scheme includes separate categories for warm, shed, and melted rain.

Rain originating from melting ice dominates the rain mass at low levels, especially along the right forward-flank precipitation shield, whereas shed-rain drops dominate a region within the left forward flank. Warm rain is only dominant in the upshear portion of the rear flank of the storm at low levels, though it dominates the total rain mass within the main updraft aloft. The warm-rain mass at low levels is associated with strong low-level downdrafts, consistent with previously published hypotheses based on polarimetric radar observations. Raindrops produced via warm processes are smaller on average than those produced by shedding and melting; drops in the latter class tend to be the largest.

Overall, the simulations fail to reproduce the diverse nature of observed supercell DSDs, although the modified microphysics scheme does increase the variability of surface DSDs compared to the Control run. This implies that more sophisticated treatment of rain microphysics is needed to capture the natural variability of supercell DSDs, including the ability to evolve the DSD spectral shape through sedimentation and collisional processes.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Dr. Matthew Kumjian, Department of Meteorology, The Pennsylvania State University, 513 Walker Building, University Park, PA 16801. E-mail: kumjian@psu.edu
Save
  • Beck, J., and C. Weiss, 2013: An assessment of low-level baroclinity and vorticity within a simulated supercell. Mon. Wea. Rev., 141, 649–669, doi:10.1175/MWR-D-11-00115.1.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and H. Morrison, 2012: Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon. Wea. Rev., 140, 202–225, doi:10.1175/MWR-D-11-00046.1.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 2394–2416, doi:10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cao, Q., G. Zhang, E. A. Brandes, T. J. Schuur, A. V. Ryzhkov, and K. Ikeda, 2008: Analysis of video disdrometer and polarimetric radar data to characterize rain microphysics in Oklahoma. J. Appl. Meteor. Climatol., 47, 2238–2255, doi:10.1175/2008JAMC1732.1.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 1974: Discussion of measurements inside high-speed thunderstorm updrafts. J. Appl. Meteor., 13, 710–717, doi:10.1175/1520-0450(1974)013<0710:DOMIHS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., and G. S. Romine, 2010: A preliminary survey of DSD measurements collected during VORTEX2. 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 8A.4. [Available online at https://ams.confex.com/ams/pdfpapers/176115.pdf.]

  • Dawson, D. T., M. Xue, J. A. Milbrandt, and M. K. Yau, 2010: Comparison of evaporation and cold pool development between single-moment and multimoment bulk microphysics schemes in idealized simulations of tornadic thunderstorms. Mon. Wea. Rev., 138, 1152–1171, doi:10.1175/2009MWR2956.1.

    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., E. R. Mansell, Y. Jung, L. J. Wicker, M. R. Kumjian, and M. Xue, 2014: Low-level signatures in supercell forward flanks: The role of size sorting and melting of hail. J. Atmos. Sci., 71, 276–299, doi:10.1175/JAS-D-13-0118.1.

    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., E. R. Mansell, and M. R. Kumjian, 2015: Does wind shear cause hydrometeor size sorting? J. Atmos. Sci., 72, 340–348, doi:10.1175/JAS-D-14-0084.1.

    • Search Google Scholar
    • Export Citation
  • Frame, J., and P. Markowski, 2013: Dynamical influences of anvil shading on simulated supercell thunderstorms. Mon. Wea. Rev., 141, 2802–2820, doi:10.1175/MWR-D-12-00146.1.

    • Search Google Scholar
    • Export Citation
  • French, M. M., L. J. Wicker, D. W. Burgess, and E. R. Mansell, 2014: Mobile, polarimetric Doppler radar observations of supercell hook echoes during VORTEX2. Special Symp. on Severe Local Storms: The Current State of the Science and Understanding Impacts, Atlanta, GA, Amer. Meteor. Soc., 817. [Available online at https://ams.confex.com/ams/94Annual/webprogram/Paper236201.html.]

  • French, M. M., D. W. Burgess, E. R. Mansell, and L. J. Wicker, 2015: Hook echo raindrop sizes retrieved using mobile, polarimetric Doppler radar observations. J. Appl. Meteor. Climatol., 54, 423–450, doi:10.1175/JAMC-D-14-0171.1.

    • Search Google Scholar
    • Export Citation
  • Grzych, M. L., B. D. Lee, and C. A. Finley, 2007: Thermodynamic analysis of supercell rear-flank downdrafts from project ANSWERS. Mon. Wea. Rev., 135, 240–246, doi:10.1175/MWR3288.1.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., K. J. Sulia, and H. Morrison, 2013: A method for adaptive habit prediction in bulk microphysical models. Part I: Theoretical development. J. Atmos. Sci., 70, 349–364, doi:10.1175/JAS-D-12-040.1.

    • Search Google Scholar
    • Export Citation
  • Hashino, T., and G. J. Tripoli, 2007: The Spectral Ice Habit Prediction System (SHIPS). Part I: Model description and simulation of the vapor deposition process. J. Atmos. Sci., 64, 2210–2237, doi:10.1175/JAS3963.1.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. Rotunno, 1983: A study of the tornadic region within a supercell thunderstorm. J. Atmos. Sci., 40, 359–377, doi:10.1175/1520-0469(1983)040<0359:ASOTTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kosiba, K., J. Wurman, Y. P. Richardson, P. M. Markowski, P. Robins, and J. Marquis, 2013: Genesis of the Goshen County, Wyoming, tornado on 5 June 2009 during VORTEX2. Mon. Wea. Rev., 141, 1157–1181, doi:10.1175/MWR-D-12-00056.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2011: Precipitation properties of supercell hook echoes. Electron. J. Severe Storms Meteor., 6 (5). [Available online at http://ejssm.org/ojs/index.php/ejssm/article/viewArticle/93.]

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2008a: Microphysical differences between tornadic and nontornadic supercell rear-flank downdrafts revealed by dual-polarization radar measurements. 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 3B.4. [Available online at https://ams.confex.com/ams/24SLS/techprogram/paper_141912.htm.]

  • Kumjian, M. R., and A. V. Ryzhkov, 2008b: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 1940–1961, doi:10.1175/2007JAMC1874.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2009: Storm-relative helicity revealed from polarimetric radar observations. J. Atmos. Sci., 66, 667–685, doi:10.1175/2008JAS2815.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2012: The impact of size sorting on the polarimetric radar variables. J. Atmos. Sci., 69, 2042–2060, doi:10.1175/JAS-D-11-0125.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and O. P. Prat, 2014: The impact of raindrop collisional processes on the polarimetric radar variables. J. Atmos. Sci., 71, 3052–3067, doi:10.1175/JAS-D-13-0357.1.

    • Search Google Scholar
    • Export Citation
  • Lebo, Z. J., H. Morrison, and J. H. Seinfeld, 2012: Are simulated aerosol-induced effects on deep convective clouds strongly dependent on saturation adjustment? Atmos. Chem. Phys., 12, 9941–9964, doi:10.5194/acp-12-9941-2012.

    • Search Google Scholar
    • Export Citation
  • Lee, B. D., C. A. Finley, and T. M. Samaras, 2011: Surface analysis near and within the Tipton, Kansas, tornado on 29 May 2008. Mon. Wea. Rev., 139, 370–386, doi:10.1175/2010MWR3454.1.

    • Search Google Scholar
    • Export Citation
  • Lee, B. D., C. A. Finley, and C. D. Karstens, 2012: The Bowdle, South Dakota, cyclic tornadic supercell of 22 May 2010: Surface analysis of rear-flank downdraft evolution and multiple internal surges. Mon. Wea. Rev., 140, 3419–3441, doi:10.1175/MWR-D-11-00351.1.

    • Search Google Scholar
    • Export Citation
  • Loftus, A. M., W. R. Cotton, and G. G. Carrió, 2014: A triple-moment hail bulk microphysics scheme. Part I: Description and initial evaluation. Atmos. Res., 149, 35–57, doi:10.1016/j.atmosres.2014.05.013.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., 2010: On sedimentation and advection in multimoment bulk microphysics. J. Atmos. Sci., 67, 3084–3094, doi:10.1175/2010JAS3341.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., 2002: Hook echoes and rear-flank downdrafts: A review. Mon. Wea. Rev., 130, 852–876, doi:10.1175/1520-0493(2002)130<0852:HEARFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2014: The influence of environmental low-level shear and cold pools on tornadogenesis: Insights from idealized simulations. J. Atmos. Sci., 71, 243–275, doi:10.1175/JAS-D-13-0159.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., J. M. Straka, and E. N. Rasmussen, 2002: Direct surface thermodynamic observations within the rear-flank downdrafts of nontornadic and tornadic supercells. Mon. Wea. Rev., 130, 1692–1721, doi:10.1175/1520-0493(2002)130<1692:DSTOWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., J. M. Straka, and E. N. Rasmussen, 2003: Tornadogenesis resulting from the transport of circulation by a downdraft: Idealized numerical simulations. J. Atmos. Sci., 60, 795–823, doi:10.1175/1520-0469(2003)060<0795:TRFTTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., Y. P. Richardson, and G. Bryan, 2014: The origins of vortex sheets in a simulated supercell thunderstorm. Mon. Wea. Rev., 142, 3944–3954, doi:10.1175/MWR-D-14-00162.1.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005a: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 3051–3064, doi:10.1175/JAS3534.1.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005b: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 3065–3081, doi:10.1175/JAS3535.1.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and R. McTaggart-Cowan, 2010: Sedimentation-induced errors in bulk microphysics schemes. J. Atmos. Sci., 67, 3931–3948, doi:10.1175/2010JAS3541.1.

    • Search Google Scholar
    • Export Citation
  • Miller, L. J., J. D. Tuttle, and C. A. Knight, 1988: Airflow and hail growth in a severe Northern Plains supercell. J. Atmos. Sci., 45, 736–762, doi:10.1175/1520-0469(1988)045<0736:AAHGIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., 2000: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt., 39, 1026–1031, doi:10.1364/AO.39.001026.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. Milbrandt, 2011: Comparison of two-moment bulk microphysics schemes in idealized supercell thunderstorm simulations. Mon. Wea. Rev., 139, 1103–1130, doi:10.1175/2010MWR3433.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. A. Milbrandt, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci., 72, 287–311, doi:10.1175/JAS-D-14-0065.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 1665–1677, doi:10.1175/JAS3446.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 991–1007, doi:10.1175/2008MWR2556.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., S. A. Tessendorf, K. Ikeda, and G. Thompson, 2012: Sensitivity of a simulated midlatitude squall line to parameterization of raindrop breakup. Mon. Wea. Rev., 140, 2437–2460, doi:10.1175/MWR-D-11-00283.1.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., and A. J. Heymsfield, 1987: Melting and shedding of graupel and hail. Part I: Model physics. J. Atmos. Sci., 44, 2754–2763, doi:10.1175/1520-0469(1987)044<2754:MASOGA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., V. Levizzani, and H. R. Pruppacher, 1984: A wind tunnel and theoretical study on the melting behavior of atmospheric ice particles: III. Experiment and theory for spherical ice particles of radius μm. J. Atmos. Sci., 41, 381–388, doi:10.1175/1520-0469(1984)041<0381:AWTATS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. R. Kumjian, S. M. Ganson, and A. P. Khain, 2013: Polarimetric radar characteristics of melting hail. Part I: Theoretical simulations using spectral microphysical modeling. J. Appl. Meteor. Climatol., 52, 2849–2870, doi:10.1175/JAMC-D-13-073.1.

    • Search Google Scholar
    • Export Citation
  • Schenkman, A. D., M. Xue, and A. Shapiro, 2012: Tornadogenesis in a simulated mesovortex within a mesoscale convective system. J. Atmos. Sci., 69, 3372–3390, doi:10.1175/JAS-D-12-038.1.

    • Search Google Scholar
    • Export Citation
  • Schenkman, A. D., M. Xue, and M. Hu, 2014: Tornadogenesis in a high-resolution simulation of the 8 May 2003 Oklahoma City supercell. J. Atmos. Sci., 71, 130–154, doi:10.1175/JAS-D-13-073.1.

    • Search Google Scholar
    • Export Citation
  • Schuur, T. J., A. V. Ryzhkov, D. S. Zrnić, and M. Schönhuber, 2001: Drop size distributions measured by a 2D video disdrometer: Comparison with dual-polarization radar data. J. Appl. Meteor., 40, 1019–1034, doi:10.1175/1520-0450(2001)040<1019:DSDMBA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., and K. D. Beheng, 2001: A double-moment parameterization for simulating autoconversion, accretion, and self-collection. Atmos. Res., 59–60, 265–281, doi:10.1016/S0169-8095(01)00126-0.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3_bw.pdf.]

  • Van Den Broeke, M. S., 2014: Effects of mid- and upper-level dry layers on microphysics of simulated supercell storms. Electron. J. Severe Storms Meteor., 9 (3). [Available online at http://www.ejssm.org/ojs/index.php/ejssm/article/viewFile/134/99.]

    • Search Google Scholar
    • Export Citation
  • Van Den Broeke, M. S., J. M. Straka, and E. Rasmussen, 2010: Mesocyclone and RFD evolution in simulated supercell storms with varying wind profiles. 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 8A.6. [Available online at https://ams.confex.com/ams/pdfpapers/175853.pdf.]

  • Wacker, U., and A. Seifert, 2001: Evolution of rain water profiles resulting from pure sedimentation: Spectral vs. parameterized description. Atmos. Res., 58, 19–39, doi:10.1016/S0169-8095(01)00081-3.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504–520, doi:10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and R. Rotunno, 2000: The use of vertical wind shear versus helicity in interpreting supercell dynamics. J. Atmos. Sci., 57, 1452–1472, doi:10.1175/1520-0469(2000)057<1452:TUOVWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., D. Dowell, Y. P. Richardson, P. M. Markowski, E. N. Rasmussen, D. W. Burgess, L. J. Wicker, and H. B. Bluestein, 2012: The Second Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX2. Bull. Amer. Meteor. Soc., 93, 1147–1170, doi:10.1175/BAMS-D-11-00010.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1553 764 387
PDF Downloads 665 113 8