A Probabilistic Approach to Forecast the Uncertainty with Ensemble Spread

Bert Van Schaeybroeck Royal Meteorological Institute, Brussels, Belgium

Search for other papers by Bert Van Schaeybroeck in
Current site
Google Scholar
PubMed
Close
and
Stéphane Vannitsem Royal Meteorological Institute, Brussels, Belgium

Search for other papers by Stéphane Vannitsem in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The ensemble spread is often used as a measure of forecast quality or uncertainty. However, it is not clear whether the spread is a good measure of uncertainty and how the spread–error relationship can be properly assessed. Even for perfectly reliable forecasts the error for a given spread varies considerably in amplitude and the spread–error relationship is therefore strongly heteroscedastic. This implies that the forecast of the uncertainty based only on the knowledge of spread should itself be probabilistic.

Simple probabilistic models for the prediction of the error as a function of the spread are introduced and evaluated for different spread–error metrics. These forecasts can be verified using probabilistic scores and a methodology is proposed to determine what the impact is of estimating uncertainty based on the spread only. A new method is also proposed to verify whether the flow-dependent spread is a realistic indicator of uncertainty. This method cancels the heteroscedasticity by a logarithmic transformation of both spread and error, after which a linear regression can be applied. An ensemble system can be identified as perfectly reliable with respect to its spread.

The approach is tested on the ECMWF Ensemble Prediction System over Europe. The use of spread only does not lead to skill degradation, and replacing the raw ensemble by a Gaussian distribution consistently improves scores. The influences of non-Gaussian ensemble statistics, small ensemble sizes, limited predictability, and different spread–error metrics are investigated and the relevance of binning is discussed. The upper-level spread–error relationship is consistent with a perfectly reliable system for intermediate lead times.

Corresponding author address: Bert Van Schaeybroeck, Royal Meteorological Institute, Ringlaan 3, B-1180 Brussels, Belgium. E-mail: bertvs@meteo.be

Abstract

The ensemble spread is often used as a measure of forecast quality or uncertainty. However, it is not clear whether the spread is a good measure of uncertainty and how the spread–error relationship can be properly assessed. Even for perfectly reliable forecasts the error for a given spread varies considerably in amplitude and the spread–error relationship is therefore strongly heteroscedastic. This implies that the forecast of the uncertainty based only on the knowledge of spread should itself be probabilistic.

Simple probabilistic models for the prediction of the error as a function of the spread are introduced and evaluated for different spread–error metrics. These forecasts can be verified using probabilistic scores and a methodology is proposed to determine what the impact is of estimating uncertainty based on the spread only. A new method is also proposed to verify whether the flow-dependent spread is a realistic indicator of uncertainty. This method cancels the heteroscedasticity by a logarithmic transformation of both spread and error, after which a linear regression can be applied. An ensemble system can be identified as perfectly reliable with respect to its spread.

The approach is tested on the ECMWF Ensemble Prediction System over Europe. The use of spread only does not lead to skill degradation, and replacing the raw ensemble by a Gaussian distribution consistently improves scores. The influences of non-Gaussian ensemble statistics, small ensemble sizes, limited predictability, and different spread–error metrics are investigated and the relevance of binning is discussed. The upper-level spread–error relationship is consistent with a perfectly reliable system for intermediate lead times.

Corresponding author address: Bert Van Schaeybroeck, Royal Meteorological Institute, Ringlaan 3, B-1180 Brussels, Belgium. E-mail: bertvs@meteo.be
Save
  • Abramowitz, M., and I. A. Stegun, 1972: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. 9th ed. Dover, 1047 pp.

  • Atger, F., 1999: The skill of ensemble prediction systems. Mon. Wea. Rev., 127, 19411953, doi:10.1175/1520-0493(1999)127<1941:TSOEPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barker, T. W., 1991: The relationship between spread and forecast error in extended-range forecasts. J. Climate, 4, 733742, doi:10.1175/1520-0442(1991)004<0733:TRBSAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Benedetti, R., 2010: Scoring rules for forecast verification. Mon. Wea. Rev., 138, 203211, doi:10.1175/2009MWR2945.1.

  • Bentzien, S., and P. Friederichs, 2014: Decomposition and graphical portrayal of the quantile score. Quart. J. Roy. Meteor. Soc., 140, 19241934, doi:10.1002/qj.2284.

    • Search Google Scholar
    • Export Citation
  • Box, E. P., J. S. Hunter, and W. G. Hunter, 2005: Statistics for Experimenters: Design, Innovation, and Discovery. 2nd ed. Wiley-Interscience, 664 pp.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., 1997: Potential forecast skill of ensemble prediction and spread and skill distributions of the ECMWF Ensemble Prediction System. Mon. Wea. Rev., 125, 99119, doi:10.1175/1520-0493(1997)125<0099:PFSOEP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., M. Leutbecher, L. Isaksen, and J. Haseler, 2010: Combined use of EDA- and SV-based perturbations in the EPS. ECMWF Newsletter, No. 123, ECMWF, Reading, United Kingdom, 22–28.

  • Candille, G., C. Côté, P. L. Houtekamer, and G. Pellerin, 2007: Verification of an ensemble prediction system against observations. Mon. Wea. Rev., 135, 26882699, doi:10.1175/MWR3414.1.

    • Search Google Scholar
    • Export Citation
  • Chatterjee, S., and A. S. Hadi, 2006: Regression Analysis by Example. 4th ed. Wiley Series in Probability and Statistics, J. Wiley and Sons, 375 pp.

    • Search Google Scholar
    • Export Citation
  • Christensen, H. M., I. M. Moroz, and T. N. Palmer, 2014: Evaluation of ensemble forecast uncertainty using a new proper score: Application to medium-range and seasonal forecasts. Quart. J. Roy. Meteor. Soc., 141, 538549, doi:10.1002/qj.2375.

    • Search Google Scholar
    • Export Citation
  • Draper, N. R., and H. Smith, 1998: Applied Regression Analysis. J. Wiley and Sons, 706 pp.

  • Eckel, F. A., M. S. Allen, and M. C. Sittel, 2012: Estimation of ambiguity in ensemble forecasts. Wea. Forecasting, 27, 5069, doi:10.1175/WAF-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Ehrendorfer, M., 1997: Predicting the uncertainty of numerical weather forecasts: A review. Meteor. Z., 6, 147183.

  • Gneiting, T., and A. E. Raftery, 2007: Strictly proper scoring rules, prediction, and estimation. J. Amer. Stat. Assoc., 102, 359378, doi:10.1198/016214506000001437.

    • Search Google Scholar
    • Export Citation
  • Gneiting, T., A. E. Raftery, A. Westveld, and T. Goldman, 2005: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Wea. Rev., 133, 10981118, doi:10.1175/MWR2904.1.

    • Search Google Scholar
    • Export Citation
  • Gneiting, T., F. Balabdaoui, and A. E. Raftery, 2007: Probabilistic forecasts, calibration and sharpness. J. Roy. Stat. Soc., 69B, 243268, doi:10.1111/j.1467-9868.2007.00587.x.

    • Search Google Scholar
    • Export Citation
  • Grimit, E. P., and C. F. Mass, 2007: Measuring the ensemble spread–error relationship with a probabilistic approach: Stochastic ensemble results. Mon. Wea. Rev., 135, 203221, doi:10.1175/MWR3262.1.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., 2000: Decomposition of the continuous ranked probability score for ensemble prediction systems. Wea. Forecasting, 15, 559570, doi:10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hopson, T. M., 2014: Assessing the ensemble spread–error relationship. Mon. Wea. Rev., 142, 11251142, doi:10.1175/MWR-D-12-00111.1.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., 1993: Global and local skill forecasts. Mon. Wea. Rev., 121, 18341846, doi:10.1175/1520-0493(1993)121<1834:GALSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, C., and N. Bowler, 2009: On the reliability and calibration of ensemble forecasts. Mon. Wea. Rev., 137, 1717, doi:10.1175/2009MWR2715.1.

    • Search Google Scholar
    • Export Citation
  • Kolczynski, W. C., D. R. Stauffer, S. E. Haupt, N. S. Altman, and A. Deng, 2011: Investigation of ensemble variance as a measure of true forecast variance. Mon. Wea. Rev., 139, 39543963, doi:10.1175/MWR-D-10-05081.1.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., P. Peitao, and C. Mingyue, 2014: Is there a relationship between potential and actual skill? Mon. Wea. Rev., 142, 22202227, doi:10.1175/MWR-D-13-00287.1.

    • Search Google Scholar
    • Export Citation
  • Leutbecher, M., 2009: Diagnosis of ensemble forecasting systems. Seminar on Diagnosis of Forecasting and Data Assimilation Systems, ECMWF, Reading, United Kingdom, 235–266.

    • Search Google Scholar
    • Export Citation
  • Leutbecher, M., and T. N. Palmer, 2008: Ensemble forecasting. J. Comput. Phys., 227, 35153539, doi:10.1016/j.jcp.2007.02.014.

  • Lorenz, E. N., 1996: Predictability—A problem partly solved. Proc. Seminar on Predictability, Vol. 1, Reading, United Kingdom, ECMWF, 1–18.

  • Nicolis, C., R. A. P. Perdigao, and S. Vannitsem, 2009: Dynamics of prediction errors under the combined effect of initial condition and model errors. J. Atmos. Sci., 66, 766778, doi:10.1175/2008JAS2781.1.

    • Search Google Scholar
    • Export Citation
  • Raftery, A. E., F. Balabdaoui, T. Gneiting, and M. Polakowski, 2005: Using Bayesian model averaging to calibrate forecast ensembles. Mon. Wea. Rev., 133, 11551174, doi:10.1175/MWR2906.1.

    • Search Google Scholar
    • Export Citation
  • Roulin, E., and S. Vannitsem, 2012: Postprocessing of ensemble precipitation predictions with extended logistic regression based on hindcasts. Mon. Wea. Rev., 140, 874888, doi:10.1175/MWR-D-11-00062.1.

    • Search Google Scholar
    • Export Citation
  • Roulston, M. S., and L. A. Smith, 2002: Evaluating probabilistic forecasts using information theory. Mon. Wea. Rev., 130, 16531660, doi:10.1175/1520-0493(2002)130<1653:EPFUIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Scherrer, S. C., C. Appenzeller, P. Eckert, and D. Cattani, 2004: Analysis of the spread–skill relations using the ECMWF Ensemble Prediction System over Europe. Wea. Forecasting, 19, 552565, doi:10.1175/1520-0434(2004)019<0552:AOTSRU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., Y. Zhu, and T. Marchok, 2001: The use of ensembles to identify forecasts with small and large uncertainty. Wea. Forecasting, 16, 463477, doi:10.1175/1520-0434(2001)016<0463:TUOETI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., O. Talagrand, G. Candille, and Y. Zhu, 2003: Probability and ensemble forecasts. Forecast Verification: A Practitioner’s Guide in Atmospheric Science, I. Jolliffe and D. B. Stephenson, Eds., J. Wiley and Sons, 137–163.

    • Search Google Scholar
    • Export Citation
  • Van Schaeybroeck, B., and S. Vannitsem, 2011: Post-processing through linear regression. Nonlinear Processes Geophys., 18, 147160, doi:10.5194/npg-18-147-2011.

    • Search Google Scholar
    • Export Citation
  • Van Schaeybroeck, B., and S. Vannitsem, 2015: Ensemble post-processing using member-by-member approaches: Theoretical aspects. Quart. J. Roy. Meteor. Soc., 141, 807818, doi:10.1002/qj.2397.

    • Search Google Scholar
    • Export Citation
  • Veenhuis, B. A., 2013: Spread calibration of ensemble MOS forecasts. Mon. Wea. Rev., 141, 24672482, doi:10.1175/MWR-D-12-00191.1.

  • Wang, X., and C. H. Bishop, 2003: A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes. J. Atmos. Sci., 60, 11401158, doi:10.1175/1520-0469(2003)060<1140:ACOBAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and A. F. Loughe, 1998: The relationship between ensemble spread and ensemble mean skill. Mon. Wea. Rev., 126, 32923302, doi:10.1175/1520-0493(1998)126<3292:TRBESA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2009: Extending logistic regression to provide full-probability-distribution MOS forecasts. Meteor. Appl., 16, 361368, doi:10.1002/met.134.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Elsevier, 676 pp.

  • Yeo, I.-K., and R. A. Johnson, 2000: A new family of power transformations to improve normality or symmetry. Biometrika, 87, 954959, doi:10.1093/biomet/87.4.954.

    • Search Google Scholar
    • Export Citation
  • Ziehmann, C., 2001: Skill prediction of local weather forecasts based on the ECMWF ensemble. Nonlinear Processes Geophys., 8, 419428, doi:10.5194/npg-8-419-2001.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 776 150 18
PDF Downloads 456 120 13