Atmospheric Kármán Vortex Shedding from Jeju Island, East China Sea: A Numerical Study

Junshi Ito Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba, Japan

Search for other papers by Junshi Ito in
Current site
Google Scholar
PubMed
Close
and
Hiroshi Niino Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba, Japan

Search for other papers by Hiroshi Niino in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A mesoscale atmospheric numerical model is used to simulate two cases of Kármán vortex shedding in the lee of Jeju Island, South Korea, in the winter of 2013. Observed cloud patterns associated with the Kármán vortex shedding are successfully reproduced. When the winter monsoon flows out from the Eurasian continent, a convective mixed layer develops through the supply of heat and moisture from the relatively warm Yellow Sea and encounters Jeju Island and dynamical conditions favorable for the formation of lee vortices are realized. Vortices that form behind the island induce updrafts to trigger cloud formation at the top of the convective boundary layer. A sensitivity experiment in which surface drag on the island is eliminated demonstrates that the formation mechanism of the atmospheric Kármán vortex shedding is different from that behind a bluff body in classical fluid mechanics.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/MWR-D-14-00406.s1.

Current affiliation: Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Ibaraki, Japan.

Corresponding author address: Junshi Ito, Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan. E-mail: junshi@aori.u-tokyo.ac.jp

Abstract

A mesoscale atmospheric numerical model is used to simulate two cases of Kármán vortex shedding in the lee of Jeju Island, South Korea, in the winter of 2013. Observed cloud patterns associated with the Kármán vortex shedding are successfully reproduced. When the winter monsoon flows out from the Eurasian continent, a convective mixed layer develops through the supply of heat and moisture from the relatively warm Yellow Sea and encounters Jeju Island and dynamical conditions favorable for the formation of lee vortices are realized. Vortices that form behind the island induce updrafts to trigger cloud formation at the top of the convective boundary layer. A sensitivity experiment in which surface drag on the island is eliminated demonstrates that the formation mechanism of the atmospheric Kármán vortex shedding is different from that behind a bluff body in classical fluid mechanics.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/MWR-D-14-00406.s1.

Current affiliation: Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Ibaraki, Japan.

Corresponding author address: Junshi Ito, Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan. E-mail: junshi@aori.u-tokyo.ac.jp

Supplementary Materials

    • Supplemental Materials (ZIP 15.58 MB)
Save
  • Ágústsson, H., and H. Ólafsson, 2014: The advection of mesoscale atmospheric vortices over Reykjavík. Mon. Wea. Rev., 142, 35493559, doi:10.1175/MWR-D-13-00060.1.

    • Search Google Scholar
    • Export Citation
  • Araki, F., S. Kawahara, D. Matsuoka, T. Sugimura, Y. Baba, and K. Takahashi, 2011: Studies of large-scale data visualization: EXTRAWING and visual data mining. Annual Report of the Earth Simulator Center April, Earth Simulator Center, Japan Agency for Marine-Earth Science and Technology, 195–199. [Available online at https://www.jamstec.go.jp/esc/publication/annual/annual2010/pdf/2project/chapter3/195araki.pdf.]

  • Asai, T., 1970: Stability of a plane parallel flow with variable vertical shear and unstable stratification. J. Meteor. Soc. Japan, 48, 129139.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A., and A. Holtslag, 1991: Flux parameterization over land surfaces for atmospheric models. J. Appl. Meteor., 30, 327341, doi:10.1175/1520-0450(1991)030<0327:FPOLSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boyer, D., P. Davies, W. Holland, F. Biolley, and H. Honji, 1987: Stratified rotating flow over and around isolated three-dimensional topography. Philos. Trans. Roy. Soc. London, A322, 213241, doi:10.1098/rsta.1987.0049.

    • Search Google Scholar
    • Export Citation
  • Brighton, P., 1978: Strongly stratified flow past three-dimensional obstacles. Quart. J. Roy. Meteor. Soc., 104, 289307, doi:10.1002/qj.49710444005.

    • Search Google Scholar
    • Export Citation
  • Caldeira, R. M. A., and R. Tomé, 2013: Wake response to an ocean-feedback mechanism: Madeira Island case study. Bound.-Layer Meteor., 148, 419436, doi:10.1007/s10546-013-9817-y.

    • Search Google Scholar
    • Export Citation
  • Chung, Y. S., and H. S. Kim, 2008: Mountain-generated vortex streets over the Korea South Sea. Int. J. Remote Sens., 29, 867877, doi:10.1080/01431160701281080.

    • Search Google Scholar
    • Export Citation
  • Couvelard, X., R. M. A. Caldeira, I. B. Araújo, and R. Tomé, 2012: Wind mediated vorticity-generation and eddy-confinement, leeward of the Madeira Island: 2008 numerical case study. Dyn. Atmos. Oceans, 58, 128149, doi:10.1016/j.dynatmoce.2012.09.005.

    • Search Google Scholar
    • Export Citation
  • Eito, H., C. Muroi, S. Hayashi, T. Kato, and M. Yoshizaki, 2004: A high-resolution wide-range numerical simulation of cloud bands associated with the Japan Sea Polar-air mass Convergence Zone in winter using a non-hydrostatic model on the Earth Simulator. CAS/JSC WGNE Res. Act. Atmos. Ocean Model, 34, 5.07–5.08. [Available online at http://www.wcrp-climate.org/WGNE/BlueBook/2004/individual-articles/05_Eito_Hisaki_05_eito_hisaki_JPCZ2001.pdf.]

  • Epifanio, C., and R. Rotunno, 2005: The dynamics of orographic wake formation in flows with upstream blocking. J. Atmos. Sci., 62, 31273150, doi:10.1175/JAS3523.1.

    • Search Google Scholar
    • Export Citation
  • Etling, D., 1989: On atmospheric vortex streets in the wake of large islands. Meteor. Atmos. Phys., 41, 157164, doi:10.1007/BF01043134.

    • Search Google Scholar
    • Export Citation
  • Gryschka, M., J. Fricke, and S. Raasch, 2014: On the impact of forced roll convection on vertical turbulent transport in cold air outbreaks. J. Geophys. Res. Atmos., 119, 12 51312 532, doi:10.1002/2014JD022160.

    • Search Google Scholar
    • Export Citation
  • Heinze, R., S. Raasch, and D. Etling, 2012: The structure of Kármán vortex streets in the atmospheric boundary layer derived from large eddy simulation. Meteor. Z., 21, 221237, doi:10.1127/0941-2948/2012/0313.

    • Search Google Scholar
    • Export Citation
  • Hirahara, Y., J. Ishida, and T. Ishimizu, 2011: Trial operation of the Local Forecast Model at JMA. CAS/JSC WGNE Res. Act. Atmos. Ocean Model, 41, 5.11–5.12. [Available online at http://www.wcrp-climate.org/WGNE/BlueBook/2011/individual-articles/05_Hirahara_Youichi_WGNE_LFM.pdf.]

  • Honnert, R., V. Masson, and F. Couvreux, 2011: A diagnostic for evaluating the representation of turbulence in atmospheric models at the kilometric scale. J. Atmos. Sci., 68, 31123131, doi:10.1175/JAS-D-11-061.1.

    • Search Google Scholar
    • Export Citation
  • Jensen, N. O., and E. M. Agee, 1978: Vortex cloud street during AMTEX 75. Tellus, 30A, 517523, doi:10.1111/j.2153-3490.1978.tb00868.x.

    • Search Google Scholar
    • Export Citation
  • Kang, S.-D., F. Kimura, and S. Takahashi, 1998: A numerical study on the Kármán vortex generated by divergence of momentum flux in flow past an isolated mountain. J. Meteor. Soc. Japan, 76, 925935.

    • Search Google Scholar
    • Export Citation
  • Li, X., W. Zheng, C.-Z. Zou, and W. G. Pichel, 2008: A SAR observation and numerical study on ocean surface imprints of atmospheric vortex streets. Sensors, 8, 33213334, doi:10.3390/s8053321.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mallock, A., 1907: On the resistance of air. Proc. Roy. Soc. London, 79, 262273, doi:10.1098/rspa.1907.0038.

  • Muller, B. M., C. G. Herbster, and F. R. Mosher, 2015: An unusual aerial photograph of an eddy circulation in marine stratocumulus clouds. Mon. Wea. Rev., 143, 419432, doi:10.1175/MWR-D-13-00316.1.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2006: An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397407, doi:10.1007/s10546-005-9030-8.

    • Search Google Scholar
    • Export Citation
  • Nunalee, C. G., and S. Basu, 2014: On the periodicity of atmospheric von Kármán vortex streets. Environ. Fluid Mech., 14, 1335–1355, doi:10.1007/s10652-014-9340-9.

    • Search Google Scholar
    • Export Citation
  • Reinecke, P. A., and D. R. Durran, 2008: Estimating topographic blocking using a Froude number when the static stability is nonuniform. J. Atmos. Sci., 65, 10351048, doi:10.1175/2007JAS2100.1.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and P. K. Smolarkiewicz, 1991: Further results on lee vortices in low-Froude-number flow. J. Atmos. Sci., 48, 22042211, doi:10.1175/1520-0469(1991)048<2204:FROLVI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ruscher, P. H., and J. W. Deardorff, 1982: A numerical simulation of an atmospheric vortex street. Tellus, 34A, 555566, doi:10.1111/j.2153-3490.1982.tb01844.x.

    • Search Google Scholar
    • Export Citation
  • Saito, K., and Coauthors, 2006: The operational JMA nonhydrostatic mesoscale model. Mon. Wea. Rev., 134, 12661298, doi:10.1175/MWR3120.1.

    • Search Google Scholar
    • Export Citation
  • Schär, C., and R. B. Smith, 1993: Shallow-water flow past isolated topography. Part I: Vorticity production and wake formation. J. Atmos. Sci., 50, 13731400, doi:10.1175/1520-0469(1993)050<1373:SWFPIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schär, C., and D. R. Durran, 1997: Vortex formation and vortex shedding in continuously stratified flows past isolated topography. J. Atmos. Sci., 54, 534554, doi:10.1175/1520-0469(1997)054<0534:VFAVSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1989: Hydrostatic airflow over mountains. Advances in Geophysics, Vol. 31, Academic Press, 141, doi:10.1016/S0065-2687(08)60052-7.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., and R. Rotunno, 1989: Low Froude number flow past three-dimensional obstacles. Part I: Baroclinically generated lee vortices. J. Atmos. Sci., 46, 11541164, doi:10.1175/1520-0469(1989)046<1154:LFNFPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Snyder, W. H., R. S. Thompson, R. E. Eskridge, R. E. Lawson, I. P. Castro, J. Lee, J. C. Hunt, and Y. Ogawa, 1985: The structure of strongly stratified flow over hills: Dividing-streamline concept. J. Fluid Mech., 152, 249288, doi:10.1017/S0022112085000684.

    • Search Google Scholar
    • Export Citation
  • Thomson, R. E., J. F. R. Gower, and N. W. Bowker, 1977: Vortex streets in the wake of the Aleutian Islands. Mon. Wea. Rev., 105, 873884, doi:10.1175/1520-0493(1977)105<0873:VSITWO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tsuchiya, K., 1969: The clouds with the shape of Kármán vortex street in the wake of Cheju Island, Korea. J. Meteor. Soc. Japan, 47, 457465.

    • Search Google Scholar
    • Export Citation
  • von Kármán, T., and H. Rubach, 1912: Über den Mechanismus des Flüssigkeits-und Luftwiderstandes (On the mechanism of the resistance in fluids). Phys. Z., 13, 49–59.

    • Search Google Scholar
    • Export Citation
  • Watanabe, S. I., and H. Niino, 2014: Genesis and development mechanisms of a polar mesocyclone over the Japan Sea. Mon. Wea. Rev., 142, 22482270, doi:10.1175/MWR-D-13-00226.1.

    • Search Google Scholar
    • Export Citation
  • Young, G. S., and J. Zawislak, 2006: An observational study of vortex spacing in island wake vortex streets. Mon. Wea. Rev., 134, 22852294, doi:10.1175/MWR3186.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1156 375 24
PDF Downloads 821 282 17