Facilitating Strongly Coupled Ocean–Atmosphere Data Assimilation with an Interface Solver

Sergey Frolov University Corporation for Atmospheric Research, Monterey, California

Search for other papers by Sergey Frolov in
Current site
Google Scholar
PubMed
Close
,
Craig H. Bishop Naval Research Laboratory, Marine Meteorology Division, Monterey, California

Search for other papers by Craig H. Bishop in
Current site
Google Scholar
PubMed
Close
,
Teddy Holt Naval Research Laboratory, Marine Meteorology Division, Monterey, California

Search for other papers by Teddy Holt in
Current site
Google Scholar
PubMed
Close
,
James Cummings Naval Research Laboratory, Monterey, California

Search for other papers by James Cummings in
Current site
Google Scholar
PubMed
Close
, and
David Kuhl Naval Research Laboratory, Washington, D.C.

Search for other papers by David Kuhl in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In a strongly coupled data assimilation (DA), a cross-fluid covariance is specified that allows measurements from a coupled fluid (e.g., atmosphere) to directly impact analysis increments in a target fluid (e.g., ocean). The exhaustive solution to this coupled DA problem calls for a covariance where all available measurements can influence all grid points in all fluids. Solution of such a large algebraic problem is computationally expensive, often calls for a substantial rewrite of existing fluid-specific DA systems, and, as shown in this paper, can be avoided.

The proposed interface solver assumes that covariances between coupled measurements and target fluid are often close to null (e.g., between stratospheric observations and the deep ocean within a 6-h forecast cycle). In the interface solver, two separate DA solvers are run in parallel: one that produces an analysis solution in the atmosphere, and one in the ocean. Each system uses a coupled observation vector where in addition to resident measurements in the target fluid it also includes nonresident measurements in the coupled fluid that are likely to have significant influence on the analysis in the target fluid (interface measurements). An ensemble-based method is employed and a localization function for coupled ensembles is proposed. Using a coupled model for the Mediterranean Sea (in a twin setting), it is demonstrated that (i) the solution of the interface solver converges to the exhaustive solution and (ii) that in presence of poorly known error covariances, the interface solver can be configured to produce a more accurate solution than an exhaustive solver.

Current affiliation: Science Applications International Corporation, McLean, Virginia.

Corresponding author address: Dr. Sergey Frolov, University Corporation for Atmospheric Research, 7 Grace Hopper Ave., Monterey, CA 93943-5502. E-mail: sergey.frolov.ctr@nrlmry.navy.mil

Abstract

In a strongly coupled data assimilation (DA), a cross-fluid covariance is specified that allows measurements from a coupled fluid (e.g., atmosphere) to directly impact analysis increments in a target fluid (e.g., ocean). The exhaustive solution to this coupled DA problem calls for a covariance where all available measurements can influence all grid points in all fluids. Solution of such a large algebraic problem is computationally expensive, often calls for a substantial rewrite of existing fluid-specific DA systems, and, as shown in this paper, can be avoided.

The proposed interface solver assumes that covariances between coupled measurements and target fluid are often close to null (e.g., between stratospheric observations and the deep ocean within a 6-h forecast cycle). In the interface solver, two separate DA solvers are run in parallel: one that produces an analysis solution in the atmosphere, and one in the ocean. Each system uses a coupled observation vector where in addition to resident measurements in the target fluid it also includes nonresident measurements in the coupled fluid that are likely to have significant influence on the analysis in the target fluid (interface measurements). An ensemble-based method is employed and a localization function for coupled ensembles is proposed. Using a coupled model for the Mediterranean Sea (in a twin setting), it is demonstrated that (i) the solution of the interface solver converges to the exhaustive solution and (ii) that in presence of poorly known error covariances, the interface solver can be configured to produce a more accurate solution than an exhaustive solver.

Current affiliation: Science Applications International Corporation, McLean, Virginia.

Corresponding author address: Dr. Sergey Frolov, University Corporation for Atmospheric Research, 7 Grace Hopper Ave., Monterey, CA 93943-5502. E-mail: sergey.frolov.ctr@nrlmry.navy.mil
Save
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903, doi:10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baker, N. L., and R. Daley, 2000: Observation and background adjoint sensitivity in the adaptive observation-targeting problem. Quart. J. Roy. Meteor. Soc., 126, 14311454, doi:10.1002/qj.49712656511.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., and Z. Toth, 1999: Ensemble transformation and adaptive observations. J. Atmos. Sci., 56, 17481765, doi:10.1175/1520-0469(1999)056<1748:ETAAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., and E. Satterfield, 2013: Hidden error variance theory. Part I: Exposition and analytic model. Mon. Wea. Rev., 141, 14541468, doi:10.1175/MWR-D-12-00118.1.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., T. R. Holt, J. Nachamkin, S. Chen, J. G. McLay, J. D. Doyle, and W. T. Thompson, 2009: Regional ensemble forecasts using the ensemble transform technique. Mon. Wea. Rev., 137, 288298, doi:10.1175/2008MWR2559.1.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., P. L. Houtekamer, C. Charette, H. L. Mitchell, and B. He, 2010a: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part I: Description and single-observation experiments. Mon. Wea. Rev., 138, 15501566, doi:10.1175/2009MWR3157.1.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., P. L. Houtekamer, C. Charette, H. L. Mitchell, and B. He, 2010b: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part II: One-month experiments with real observations. Mon. Wea. Rev., 138, 15671586, doi:10.1175/2009MWR3158.1.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., R. A. deSzoeke, M. G. Schlax, K. El Naggar, and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460, doi:10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, S., T. Cambell, H. Jin, S. Gabersek, R. Hodur, and P. Martin, 2010: Effect of two-way air–sea coupling in high and low wind speed regimes. Mon. Wea. Rev., 138, 35793602, doi:10.1175/2009MWR3119.1.

    • Search Google Scholar
    • Export Citation
  • Clayton, A. M., A. C. Lorenc, and D. M. Barker, 2013: Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met Office. Quart. J. Roy. Meteor. Soc., 139, 14451461, doi:10.1002/qj.2054.

    • Search Google Scholar
    • Export Citation
  • Cummings, J. A., and O. M. Smedstad, 2013: Variational data assimilation for the global ocean. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, S. K. Park and L. Xu, Eds., Vol. II, Springer, 303–343.

  • Daley, R., and E. Barker, 2001: NAVDAS: Formulation and diagnostics. Mon. Wea. Rev., 129, 869883, doi:10.1175/1520-0493(2001)129<0869:NFAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, doi:10.1002/qj.49712555417.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., S. E. Cohn, J. Guo, and S. Pawson, 2006: Construction and application of covariance functions with variable length-fields. Quart. J. Roy. Meteor. Soc., 132, 18151838, doi:10.1256/qj.05.08.

    • Search Google Scholar
    • Export Citation
  • Han, G., X. Wu, S. Zhang, Z. Liu, and W. Li, 2013: Error covariance estimation for coupled data assimilation using a Lorenz atmosphere and a simple pycnocline ocean model. J. Climate, 26, 10 21810 231, doi:10.1175/JCLI-D-13-00236.1.

    • Search Google Scholar
    • Export Citation
  • Hill, C., C. DeLuca, B. Balaji, M. Suarez, and A. Da Silva, 2004: The architecture of the Earth System Modeling Framework. Comput. Sci. Eng., 6, 18–28, doi:10.1109/MCISE.2004.1255817.

    • Search Google Scholar
    • Export Citation
  • Hodur, R. M., 1997: The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Mon. Wea. Rev., 125, 14141430, doi:10.1175/1520-0493(1997)125<1414:TNRLSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hogan, T. F., and T. E. Rosmond, 1991: The description of the Navy Operational Global Atmospheric Prediction System’s spectral forecast model. Mon. Wea. Rev., 119, 17861815, doi:10.1175/1520-0493(1991)119<1786:TDOTNO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holt, T. R., J. A. Cummings, C. H. Bishop, J. D. Doyle, X. Hong, S. Chen, and Y. Jin, 2011: Development and testing of a coupled ocean–atmosphere mesoscale ensemble prediction system. Ocean Dyn., 61, 19371954, doi:10.1007/s10236-011-0449-9.

    • Search Google Scholar
    • Export Citation
  • Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos : A local ensemble transform Kalman filter. Physica D, 230, 112126, doi:10.1016/j.physd.2006.11.008.

    • Search Google Scholar
    • Export Citation
  • Kuhl, D. D., T. E. Rosmond, C. H. Bishop, J. McLay, and N. L. Baker, 2013: Comparison of hybrid ensemble/4DVar and 4DVar within the NAVDAS-AR data assimilation framework. Mon. Wea. Rev., 141, 27402758, doi:10.1175/MWR-D-12-00182.1.

    • Search Google Scholar
    • Export Citation
  • Laloyaux, P., M. Balmaseda, D. Dee, K. Mogensen, and P. Janssen, 2015: A coupled data assimilation system for climate reanalysis. Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.2629, in press.

  • Le Dimet, F.-X., and O. Talagrand, 1986: Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus, 38A, 97110, doi:10.1111/j.1600-0870.1986.tb00459.x.

    • Search Google Scholar
    • Export Citation
  • Lu, F., Z. Liu, S. Zhang, and Y. Liu, 2015: Strongly coupled data assimilation using Leading Averaged Coupled Covariance (LACC). Part I: Simple model study. Mon. Wea. Rev., 143, 3823–3837, doi:10.1175/MWR-D-14-00322.1.

    • Search Google Scholar
    • Export Citation
  • Luo, X., and I. Hoteit, 2014: Ensemble Kalman filtering with a divided state-space strategy for coupled data assimilation problems. Mon. Wea. Rev., 142, 45424558, doi:10.1175/MWR-D-13-00402.1.

    • Search Google Scholar
    • Export Citation
  • MacLachlan, C., and Coauthors, 2015: Global Seasonal forecast system version 5 (GloSea5): A high-resolution seasonal forecast system. Quart. J. Roy. Meteor. Soc., 141, 1072–1084, doi:10.1002/qj.2396.

    • Search Google Scholar
    • Export Citation
  • McLay, J. G., C. H. Bishop, and C. A. Reynolds, 2008: Evaluation of the ensemble transform analysis perturbation scheme at NRL. Mon. Wea. Rev., 136, 10931108, doi:10.1175/2007MWR2010.1.

    • Search Google Scholar
    • Export Citation
  • Rhodes, R. C., and Coauthors, 2002: Navy real-time global modeling systems. Oceanography, 15, 2943, doi:10.5670/oceanog.2002.34.

  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Shelly, A., P. Xavier, D. Copsey, T. Johns, J. M. Rodr, S. Milton, and N. Klingaman, 2014: Coupled versus uncoupled hindcast simulations of the Madden–Julian Oscillation in the Year of Tropical Convection. Geophys. Res. Lett., 41, 56705677, doi:10.1002/2013GL059062.

    • Search Google Scholar
    • Export Citation
  • Smith, T. A., and Coauthors, 2013: Ocean-wave coupled modeling in COAMPS-TC: A study of Hurricane Ivan (2004). Ocean Modell., 69, 181194, doi:10.1016/j.ocemod.2013.06.003.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., and E. Kalnay, 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev., 125, 32973319, doi:10.1175/1520-0493(1997)125<3297:EFANAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wei, M., Z. Toth, R. Wobus, and Y. Zhu, 2008: Initial perturbations based on the ensemble transform (ET) technique in the NCEP global operational forecast system. Tellus, 60A, 6279, doi:10.3402/tellusa.v60i1.15267.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 793 273 10
PDF Downloads 251 81 2