The Inland Eyewall Reintensification of Typhoon Fanapi (2010) Documented from an Observational Perspective Using Multiple-Doppler Radar and Surface Measurements

Yu-Chieng Liou Department of Atmospheric Sciences, National Central University, Jhongli, Tao-Yuan City, Taiwan

Search for other papers by Yu-Chieng Liou in
Current site
Google Scholar
PubMed
Close
,
Tai-Chi Chen Wang Department of Atmospheric Sciences, National Central University, Jhongli, Tao-Yuan City, Taiwan

Search for other papers by Tai-Chi Chen Wang in
Current site
Google Scholar
PubMed
Close
, and
Pei-Yu Huang Department of Atmospheric Sciences, National Central University, Jhongli, Tao-Yuan City, Taiwan

Search for other papers by Pei-Yu Huang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study documents observational changes in the eyewall of Typhoon Fanapi (2010) after landfall in Taiwan. The observations indicate that Fanapi’s eye and eyewall disappeared on the eastern side of Taiwan’s Central Mountain Range (CMR) after landfall, but reemerged on the western side of CMR. The cyclonic circulation, increasing wind speed, a low-level low pressure and high temperature zone, the associated updrafts and downdrafts, and surface pressure and rainfall measurements all support the existence of a reintensified eyewall. The storm slowed down during the redeveloping stage, thus prolonging the rainfall duration over Taiwan.

On the western side of CMR a northwest–southeast-oriented rainband formed at an earlier stage, possibly due to the large-scale interaction between Fanapi’s remnant flow and the environment. However, the subsequent reintensification might be attributed to the interaction between the circulation and topography. This is supported by the finding that adjacent to CMR, strong wind develops vertically from lower levels, indicating that the reintensification appears to be initiated through a bottom-up process. A vorticity budget analysis shows that at lower layers the stretching mechanism plays a leading role in increasing positive vorticity, followed by the contributions from tilting and horizontal advection. The horizontal advection plays a comparable role to the vertical advection in increasing low- to midlevel vorticity. The vertical advection aloft is responsible for transporting the vorticity upward. Finally, this research provides a relatively rare documentation of the vortical hot towers (VHTs) over terrain using ground-based radars, in contrast to most previous studies focusing on maritime VHTs using simulations or aircraft measurements.

Corresponding author address: Dr. Tai-Chi Chen Wang, Department of Atmospheric Sciences, National Central University, No. 300, Jhongda Road, Jhongli, Tao-Yuan City, 320 Taiwan. E-mail: taichirainbow@gmail.com

Abstract

This study documents observational changes in the eyewall of Typhoon Fanapi (2010) after landfall in Taiwan. The observations indicate that Fanapi’s eye and eyewall disappeared on the eastern side of Taiwan’s Central Mountain Range (CMR) after landfall, but reemerged on the western side of CMR. The cyclonic circulation, increasing wind speed, a low-level low pressure and high temperature zone, the associated updrafts and downdrafts, and surface pressure and rainfall measurements all support the existence of a reintensified eyewall. The storm slowed down during the redeveloping stage, thus prolonging the rainfall duration over Taiwan.

On the western side of CMR a northwest–southeast-oriented rainband formed at an earlier stage, possibly due to the large-scale interaction between Fanapi’s remnant flow and the environment. However, the subsequent reintensification might be attributed to the interaction between the circulation and topography. This is supported by the finding that adjacent to CMR, strong wind develops vertically from lower levels, indicating that the reintensification appears to be initiated through a bottom-up process. A vorticity budget analysis shows that at lower layers the stretching mechanism plays a leading role in increasing positive vorticity, followed by the contributions from tilting and horizontal advection. The horizontal advection plays a comparable role to the vertical advection in increasing low- to midlevel vorticity. The vertical advection aloft is responsible for transporting the vorticity upward. Finally, this research provides a relatively rare documentation of the vortical hot towers (VHTs) over terrain using ground-based radars, in contrast to most previous studies focusing on maritime VHTs using simulations or aircraft measurements.

Corresponding author address: Dr. Tai-Chi Chen Wang, Department of Atmospheric Sciences, National Central University, No. 300, Jhongda Road, Jhongli, Tao-Yuan City, 320 Taiwan. E-mail: taichirainbow@gmail.com
Save
  • Armijo, L., 1969: A theory for the determination of wind and precipitation velocities with Doppler radars. J. Atmos. Sci., 26, 570573, doi:10.1175/1520-0469(1969)026<0570:ATFTDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., R. E. Tuleya, and Y. Kurihara, 1987: A numerical study of the effect of island terrain on tropical cyclones. Mon. Wea. Rev., 115, 130155, doi:10.1175/1520-0493(1987)115<0130:ANSOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Black, M. L., and H. E. Willoughby, 1992: The concentric eyewall cycle of Hurricane Gilbert. Mon. Wea. Rev., 120, 947957, doi:10.1175/1520-0493(1992)120<0947:TCECOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brand, S., and J. W. Blelloch, 1974: Changes in the characteristics of typhoons crossing the island of Taiwan. Mon. Wea. Rev., 102, 708713, doi:10.1175/1520-0493(1974)102<0708:CITCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., T.-C. Yeh, and J. M. Chen, 1993: Effects of terrain on the surface structure of typhoons over Taiwan. Mon. Wea. Rev., 121, 734752, doi:10.1175/1520-0493(1993)121<0734:EOTOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, S. W.-J., 1982: The orographic effects induced by an island mountain range on propagating tropical cyclones. Mon. Wea. Rev., 110, 12551270, doi:10.1175/1520-0493(1982)110<1255:TOEIBA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chong, M., and O. Bousquet, 2001: On the application of MUSCAT to a ground-based dual-Doppler radar system. Meteor. Atmos. Phys., 78, 133139, doi:10.1007/s007030170011.

    • Search Google Scholar
    • Export Citation
  • Chou, K.-H., C.-C. Wu, and Y. Wang, 2011: Eyewall evolution of typhoons crossing the Philippines and Taiwan: An observational study. Terr. Atmos. Oceanic Sci., 22, 535548, doi:10.3319/TAO.2011.05.10.01(TM).

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and J. B. Klemp, 1982: On the effects of moisture on the Brunt–Väisälä frequency. J. Atmos. Sci., 39, 21522158, doi:10.1175/1520-0469(1982)039<2152:OTEOMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gal-Chen, T., 1978: A method for the initialization of the anelastic equations: Implications for matching models with observations. Mon. Wea. Rev., 106, 587606, doi:10.1175/1520-0493(1978)106<0587:AMFTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., and D. J. Shea, 1973: The hurricane’s inner core region. II. Thermal stability and dynamic characteristics. J. Atmos. Sci., 30, 15651576, doi:10.1175/1520-0469(1973)030<1565:THICRI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hack, J. J., and W. H. Schubert, 1986: Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J. Atmos. Sci., 43, 15591573, doi:10.1175/1520-0469(1986)043<1559:NROAVT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. T. Montgomery, and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61, 12091232, doi:10.1175/1520-0469(2004)061<1209:TROVHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., S. S. Chen, B. F. Smull, W.-C. Lee, and M. M. Bell, 2007: Hurricane intensity and eyewall replacement. Science, 315, 12351239, doi:10.1126/science.1135650.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., W.-C. Lee, and M. M. Bell, 2009: Convective contribution to the genesis of Hurricane Ophelia (2005). Mon. Wea. Rev., 137, 27782800, doi:10.1175/2009MWR2727.1.

    • Search Google Scholar
    • Export Citation
  • Hsu, L.-H., H.-C. Kuo, and R. G. Fovell, 2013: On the geographic asymmetry of typhoon translation speed across the mountainous island of Taiwan. J. Atmos. Sci., 70, 10061022, doi:10.1175/JAS-D-12-0173.1.

    • Search Google Scholar
    • Export Citation
  • Huang, Y.-H., C.-C. Wu, and Y. Wang, 2011: The influence of island topography on typhoon track deflection. Mon. Wea. Rev., 139, 17081727, doi:10.1175/2011MWR3560.1.

    • Search Google Scholar
    • Export Citation
  • Jian, G.-J., and C.-C. Wu, 2008: A numerical study of the track deflection of Supertyphoon Haitang (2005) prior to its landfall in Taiwan. Mon. Wea. Rev., 136, 598615, doi:10.1175/2007MWR2134.1.

    • Search Google Scholar
    • Export Citation
  • Judt, F., and S. S. Chen, 2010: Convectively generated potential vorticity in rainbands and formation of the secondary eyewall in Hurricane Rita of 2005. J. Atmos. Sci., 67, 35813599, doi:10.1175/2010JAS3471.1.

    • Search Google Scholar
    • Export Citation
  • Kelley, O. A., J. Stout, and J. B. Halverson, 2004: Tall precipitation cells in tropical cyclone eyewalls are associated with tropical cyclone intensification. Geophys. Res. Lett., 31, L24112, doi:10.1029/2004GL021616.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and M. D. Eastin, 2001: Two distinct regimes in the kinematic and thermodynamic structure of the hurricane eye and eyewall. J. Atmos. Sci., 58, 10791090, doi:10.1175/1520-0469(2001)058<1079:TDRITK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., S.-Y. Chen, C. M. Hill, and C.-Y. Huang, 2005: Control parameters for the influence of a mesoscale mountain range on cyclone track continuity and deflection. J. Atmos. Sci., 62, 18491866, doi:10.1175/JAS3439.1.

    • Search Google Scholar
    • Export Citation
  • Liou, Y.-C., and Y.-J. Chang, 2009: A variational multiple-Doppler radar three-dimensional wind synthesis method and its impacts on thermodynamic retrieval. Mon. Wea. Rev., 137, 39924010, doi:10.1175/2009MWR2980.1.

    • Search Google Scholar
    • Export Citation
  • Liou, Y.-C., S.-F. Chang, and J. Sun, 2012: An application of the immersed boundary method for recovering the three-dimensional wind fields over complex terrain using multiple-Doppler radar data. Mon. Wea. Rev., 140, 16031619, doi:10.1175/MWR-D-11-00151.1.

    • Search Google Scholar
    • Export Citation
  • Malkus, J. S., C. Ronne, and M. Chaffee, 1961: Cloud patterns in Hurricane Daisy, 1958. Tellus, 13, 830, doi:10.1111/j.2153-3490.1961.tb00062.x.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., and S. Skubis, 1985: Evolution of the surface wind field in an intensifying tropical cyclone. J. Atmos. Sci., 42, 28652879, doi:10.1175/1520-0469(1985)042<2865:EOTSWF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. E. Nicholls, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355385, doi:10.1175/JAS3604.1.

    • Search Google Scholar
    • Export Citation
  • Peng, L., S.-T. Wang, S.-L. Shieh, M.-D. Cheng, and T.-C. Yeh, 2012: Surface track discontinuity of tropical cyclones crossing Taiwan: A statistical study. Mon. Wea. Rev., 140, 121139, doi:10.1175/MWR-D-10-05050.1.

    • Search Google Scholar
    • Export Citation
  • Protat, A., and I. Zawadzki, 1999: A variational method for real-time retrieval of three-dimensional wind field from multiple-Doppler bistatic radar network data. J. Atmos. Oceanic Technol., 16, 432449, doi:10.1175/1520-0426(1999)016<0432:AVMFRT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Protat, A., and I. Zawadzki, 2000: Optimization of dynamic retrievals from a multiple-Doppler radar network. J. Atmos. Oceanic Technol., 17, 753760, doi:10.1175/1520-0426(2000)017<0753:OODRFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, and L. F. Bosart, 2005: Mesoscale observations of the genesis of Hurricane Dolly (1996). J. Atmos. Sci., 62, 31513171, doi:10.1175/JAS3540.1.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 16871697, doi:10.1175/1520-0469(1982)039<1687:ISATCD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., M. T. Montgomery, R. K. Taft, T. A. Guinn, S. R. Fulton, J. P. Kossin, and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56, 11971223, doi:10.1175/1520-0469(1999)056<1197:PEAECA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shapiro, A., C. K. Potvin, and J. Gao, 2009: Use of a vertical vorticity equation in variational dual-Doppler wind analysis. J. Atmos. Oceanic Technol., 26, 20892106, doi:10.1175/2009JTECHA1256.1.

    • Search Google Scholar
    • Export Citation
  • Shea, D. J., and W. M. Gray, 1973: The hurricane’s inner core region. I. Symmetric and asymmetric structures. J. Atmos. Sci., 30, 15441564, doi:10.1175/1520-0469(1973)030<1544:THICRI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., J. B. Halverson, B. S. Ferrier, W. A. Petersen, R. H. Simpson, R. Blakeslee, and S. L. Durden, 1998: On the role of “hot towers” in tropical cyclone formation. Meteor. Atmos. Phys., 67, 1535, doi:10.1007/BF01277500.

    • Search Google Scholar
    • Export Citation
  • Sippel, J. A., J. W. Nielsen-Gammon, and S. E. Allen, 2006: The multiple vortex nature of tropical cyclogenesis. Mon. Wea. Rev., 134, 17961814, doi:10.1175/MWR3165.1.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and N. A. Crook, 1997: Dynamic and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiment. J. Atmos. Sci., 54, 16421661, doi:10.1175/1520-0469(1997)054<1642:DAMRFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tseng, Y., and J. Ferziger, 2003: A ghost-cell immersed boundary method for flow in complex geometry. J. Comput. Phys., 192, 593623, doi:10.1016/j.jcp.2003.07.024.

    • Search Google Scholar
    • Export Citation
  • Wang, C.-C., H.-C. Kuo, Y.-H. Chen, H.-L. Huang, C.-H. Chung, and K. Tsuboki, 2012: Effects of asymmetric latent heating on typhoon movement crossing Taiwan: The case of Morakot (2009) with extreme rainfall. J. Atmos. Sci., 69, 31723196, doi:10.1175/JAS-D-11-0346.1.

    • Search Google Scholar
    • Export Citation
  • Wang, C.-C., Y.-H. Chen, H.-C. Kuo, and S.-Y. Huang, 2013: Sensitivity of typhoon track to asymmetric latent heating/rainfall induced by Taiwan topography: A numerical study of Typhoon Fanapi (2010). J. Geophys. Res. Atmos., 118, 32923308, doi:10.1002/jgrd.50351.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1998: Tropical cyclone eye thermodynamics. Mon. Wea. Rev., 126, 30533067, doi:10.1175/1520-0493(1998)126<3053:TCET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., J. A. Clos, and M. G. Shoreibah, 1982: Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395411, doi:10.1175/1520-0469(1982)039<0395:CEWSWM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, C. C., K. H. Chou, H. J. Cheng, and Y. Wang, 2003: Eyewall contraction, breakdown and reformation in a landfalling typhoon. Geophys. Res. Lett., 30, 1887, doi:10.1029/2003GL017653.

    • Search Google Scholar
    • Export Citation
  • Wu, C. C., H. J. Cheng, Y. Wang, and K. H. Chou, 2009: A numerical investigation of the eyewall evolution in a landfalling typhoon. Mon. Wea. Rev., 137, 2140, doi:10.1175/2008MWR2516.1.

    • Search Google Scholar
    • Export Citation
  • Yeh, T.-C., and R. L. Elsberry, 1993a: Interaction of typhoons with the Taiwan orography. Part I: Upstream track deflections. Mon. Wea. Rev., 121, 31933212, doi:10.1175/1520-0493(1993)121<3193:IOTWTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yeh, T.-C., and R. L. Elsberry, 1993b: Interaction of typhoons with the Taiwan orography. Part II: Continuous and discontinuous tracks across the island. Mon. Wea. Rev., 121, 32133233, doi:10.1175/1520-0493(1993)121<3213:IOTWTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 244 73 2
PDF Downloads 181 40 1