The Effect of the Balcones Escarpment on Three Cases of Extreme Precipitation in Central Texas

Erik R. Nielsen Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Erik R. Nielsen in
Current site
Google Scholar
PubMed
Close
,
Russ S. Schumacher Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Russ S. Schumacher in
Current site
Google Scholar
PubMed
Close
, and
Alexandra M. Keclik Atmospheric Science Program, Department of Mathematical Sciences, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin

Search for other papers by Alexandra M. Keclik in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The proximity to the Gulf of Mexico and local topography makes central Texas particularly prone to heavy precipitation and deadly flood events. Specifically, the Balcones Escarpment, located in central Texas, creates extremely favorable hydrologic characteristics for damaging floods. Urban centers such as San Antonio and Austin, Texas, are located along this terrain feature and have suffered at times, even with mitigation strategies, catastrophic flood damage. While the hydrologic effects of the Balcones Escarpment are well known, the meteorological impacts are uncertain. The purpose of this study is to evaluate the effect of the Balcones Escarpment in three cases of extreme precipitation in which the rainfall was maximized near the escarpment. Numerical simulations for each event were run at convection-allowing grid spacing using the Weather Research and Forecasting (WRF) Model and were used as control runs. Then, the Balcones Escarpment was removed by moving the associated terrain gradient to the north and west. The removal of the Balcones Escarpment did not change the overall characteristics of any of the three rainfall events, with the spatial pattern and magnitude of precipitation similar between the control and terrain-modified simulations. However, the location of the maximum precipitation was slightly, but consistently, shifted to the north and west. These results show that the overall atmospheric conditions are much more important for determining the intensity and occurrence of extreme rainfall in central Texas than the local topography, but the Balcones Escarpment can cause subtle hydrologically important changes in the location of the maximum accumulation.

Corresponding author address: Erik Nielsen, Department of Atmospheric Science, Colorado State University, 200 West Lake Street, 1371 Campus Delivery, Fort Collins, CO 80523-1371. E-mail: erik.nielsen@colostate.edu

Abstract

The proximity to the Gulf of Mexico and local topography makes central Texas particularly prone to heavy precipitation and deadly flood events. Specifically, the Balcones Escarpment, located in central Texas, creates extremely favorable hydrologic characteristics for damaging floods. Urban centers such as San Antonio and Austin, Texas, are located along this terrain feature and have suffered at times, even with mitigation strategies, catastrophic flood damage. While the hydrologic effects of the Balcones Escarpment are well known, the meteorological impacts are uncertain. The purpose of this study is to evaluate the effect of the Balcones Escarpment in three cases of extreme precipitation in which the rainfall was maximized near the escarpment. Numerical simulations for each event were run at convection-allowing grid spacing using the Weather Research and Forecasting (WRF) Model and were used as control runs. Then, the Balcones Escarpment was removed by moving the associated terrain gradient to the north and west. The removal of the Balcones Escarpment did not change the overall characteristics of any of the three rainfall events, with the spatial pattern and magnitude of precipitation similar between the control and terrain-modified simulations. However, the location of the maximum precipitation was slightly, but consistently, shifted to the north and west. These results show that the overall atmospheric conditions are much more important for determining the intensity and occurrence of extreme rainfall in central Texas than the local topography, but the Balcones Escarpment can cause subtle hydrologically important changes in the location of the maximum accumulation.

Corresponding author address: Erik Nielsen, Department of Atmospheric Science, Colorado State University, 200 West Lake Street, 1371 Campus Delivery, Fort Collins, CO 80523-1371. E-mail: erik.nielsen@colostate.edu
Save
  • Alcott, T. I., and W. J. Steenburgh, 2013: Orographic influences on a Great Salt Lake–effect snowstorm. Mon. Wea. Rev., 141, 2432–2450, doi:10.1175/MWR-D-12-00328.1.

    • Search Google Scholar
    • Export Citation
  • Ashley, S. T., and W. S. Ashley, 2008: Flood fatalities in the United States. J. Appl. Meteor. Climatol., 47, 805–818, doi:10.1175/2007JAMC1611.1.

    • Search Google Scholar
    • Export Citation
  • Baker, V. R., 1975: Flood hazards along the Balcones Escarpment in central Texas alternative approaches to their recognition, mapping, and management. Texas Bureau of Economic Geology Geological Circular 75-5, 22 pp.

  • Baker, V. R., 1977: Stream-channel response to floods, with examples from central Texas. Geol. Soc. Amer. Bull., 88, 1057–1071, doi:10.1130/0016-7606(1977)88<1057:SRTFWE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., 1984: Daytime boundary-layer evolution over mountainous terrain. Part I: Observations of the dry circulations. Mon. Wea. Rev., 112, 340–356, doi:10.1175/1520-0493(1984)112<0340:DBLEOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Blumen, W., 1990: Atmospheric Processes over Complex Terrain. Meteor. Monogr., No. 45, Amer. Meteor. Soc., 323 pp.

  • Bresson, E., V. Ducrocq, O. Nuissier, D. Ricard, and C. de Saint-Aubin, 2012: Idealized numerical simulations of quasi-stationary convective systems over the northwestern Mediterranean complex terrain. Quart. J. Roy. Meteor. Soc., 138, 1751–1763, doi:10.1002/qj.1911.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 2394–2416, doi:10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Burby, R. J., 2001: Flood insurance and floodplain management: The U.S. experience. Global Environ. Change, 3B, 111–122, doi:10.1016/S1464-2867(02)00003-7.

    • Search Google Scholar
    • Export Citation
  • Caracena, F., and J. Fritsch, 1983: Focusing mechanisms in the Texas Hill Country flash floods of 1978. Mon. Wea. Rev., 111, 2319–2332, doi:10.1175/1520-0493(1983)111<2319:FMITTH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Caran, S. C., and V. R. Baker, 1986: Flooding along the Balcones Escarpment, central Texas. The Balcones Escarpment: Geology, Hydrology, Ecology and Social Development in Central Texas, Geological Society of America, 1–14.

  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569–585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cifelli, R., N. Doesken, P. Kennedy, L. D. Carey, S. A. Rutledge, C. Gimmestad, and T. Depue, 2005: The Community Collaborative Rain, Hail, and Snow Network: Informal education for scientists and citizens. Bull. Amer. Meteor. Soc., 86, 1069–1077, doi:10.1175/BAMS-86-8-1069.

    • Search Google Scholar
    • Export Citation
  • COESA, 1976: U.S. Standard Atmosphere, 1976. NOAA, 227 pp.

  • Collier, C. G., 2007: Flash flood forecasting: What are the limits of predictability?. Quart. J. Roy. Meteor. Soc., 133, 3–23, doi: 10.1002/qj.29.

    • Search Google Scholar
    • Export Citation
  • Costa, J. E., 1987: Hydraulics and basin morphometry of the largest flash floods in the conterminous United States. J. Hydrol., 93, 313–338, doi:10.1016/0022-1694(87)90102-8.

    • Search Google Scholar
    • Export Citation
  • Cutter, S. L., 1996: Vulnerability to environmental hazards. Prog. Hum. Geogr., 20, 529–539, doi:10.1177/030913259602000407.

  • Doswell, C. A., III, H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560–581, doi:10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ducrocq, V., O. Nuissier, D. Ricard, C. Lebeaupin, and T. Thouvenin, 2008: A numerical study of three catastrophic precipitating events over southern France. II: Mesoscale triggering and stationarity factors. Quart. J. Roy. Meteor. Soc., 134, 131–145, doi:10.1002/qj.199.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., J. D. Murphy, and J. S. Kain, 1994: Warm-core vortex amplification over land. J. Atmos. Sci., 51, 1780–1807, doi:10.1175/1520-0469(1994)051<1780:WCVAOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Funk, T., 2006: Heavy convective rainfall forecasting: A look at elevated convection, propagation, and precipitation efficiency. Proc. 10th Severe Storm and Doppler Radar Conf., Des Moines, IA, National Weather Association.

  • Hamill, T. M., G. T. Bates, J. S. Whitaker, D. R. Murray, M. Fiorino, T. J. Galarneau, Jr, Y. Zhu, and W. Lapenta, 2013: NOAA’s second-generation global medium-range ensemble reforecast dataset. Bull. Amer. Meteor. Soc., 94, 1553–1565, doi:10.1175/BAMS-D-12-00014.1.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Hovmöller, E., 1949: The trough-and-ridge diagram. Tellus, 1A, 62–66, doi:10.1111/j.2153-3490.1949.tb01260.x.

  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

  • Kirshbaum, D. J., 2013: On thermally forced circulations over heated terrain. J. Atmos. Sci., 70, 1690–1709, doi:10.1175/JAS-D-12-0199.1.

    • Search Google Scholar
    • Export Citation
  • Lean, H. W., N. M. Roberts, P. A. Clark, and C. Morcrette, 2009: The surprising role of orography in the initiation of an isolated thunderstorm in southern England. Mon. Wea. Rev., 137, 3026–3046, doi:10.1175/2009MWR2743.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., and K. E. Mitchell, 2005: The NCEP stage II/IV hourly precipitation analyses: Development and applications. 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2. [Available online at https://ams.confex.com/ams/Annual2005/techprogram/paper_83847.htm.]

  • Maddox, R. A., L. R. Hoxit, C. F. Chappell, and F. Caracena, 1978: Comparison of meteorological aspects of the Big Thompson and Rapid City flash floods. Mon. Wea. Rev., 106, 375–389, doi:10.1175/1520-0493(1978)106<0375:COMAOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. John Wiley & Sons, 407 pp.

  • Martin, P. L., and R. Edwards, 1995: A severe weather, hurricane, and flood climatology for the Austin/San Antonio WFO county warning area. NOAA Tech. Memo. NWS SR-167, 28 pp.

  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343–360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Morales, A., R. S. Schumacher, and S. M. Kreidenweis, 2015: Mesoscale vortex development during extreme precipitation: Colorado, September 2013. Mon. Wea. Rev., doi:10.1175/MWR-D-15-0086.1, in press.

    • Search Google Scholar
    • Export Citation
  • Morrison, H. G., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 991–1007, doi:10.1175/2008MWR2556.1.

    • Search Google Scholar
    • Export Citation
  • NCEP/ESRL, 2015: North American Regional Reanalysis. Accessed 26 January 2015. [Available online at http://nomads.ncdc.noaa.gov/data.php?name=access#narr_datasets.]

  • Nielsen-Gammon, J. W., F. Zhang, A. M. Odins, and B. Myoung, 2005: Extreme rainfall in Texas: Patterns and predictability. Phys. Geogr., 26, 340–364, doi:10.2747/0272-3646.26.5.340.

    • Search Google Scholar
    • Export Citation
  • NOAA, 2015a: Storm events database. National Climatic Data Center. Subset used: Flash flood events from 01/1950 to 01/2015, accessed 29 January 2015. [Available online at http://www.ncdc.noaa.gov/stormevents/.]

  • NOAA, 2015b: Storm Prediction Center sounding climatology page. [Available online at http://www.spc.noaa.gov/exper/soundingclimo/.]

  • NWS, 1999: Service assessment: South Texas Floods October 17–22, 1998. National Weather Service, 26 pp. [Available online at http://www.nws.noaa.gov/om/assessments/pdfs/txflood.pdf.]

  • O’Connor, J. E., and J. E. Costa, 2004: Spatial distribution of the largest rainfall-runoff floods from basins between 2.6 and 26,000 km2 in the United States and Puerto Rico. Water Resour. Res., 40, W01107, doi:10.1029/2003WR002247.

    • Search Google Scholar
    • Export Citation
  • Patton, P. C., and V. R. Baker, 1976: Morphometry and floods in small drainage basins subject to diverse hydrogeomorphic controls. Water Resour. Res., 12, 941–952, doi:10.1029/WR012i005p00941.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., and Coauthors, 1999: Mesoscale and radar observations of the Fort Collins flash flood of 28 July 1997. Bull. Amer. Meteor. Soc., 80, 191–216, doi:10.1175/1520-0477(1999)080<0191:MAROOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Jr., and M. W. Downton, 2000: Precipitation and damaging floods: Trends in the United States, 1932–97. J. Climate, 13, 3625–3637, doi:10.1175/1520-0442(2000)013<3625:PADFTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pontrelli, M. D., G. Bryan, and J. Fritsch, 1999: The Madison County, Virginia, flash flood of 27 June 1995. Wea. Forecasting, 14, 384–404, doi:10.1175/1520-0434(1999)014<0384:TMCVFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and R. H. Johnson, 2009: Quasi-stationary, extreme-rain-producing convective systems associated with midlevel cyclonic circulations. Wea. Forecasting, 24, 555–574, doi:10.1175/2008WAF2222173.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and A. J. Clark, 2014: Evaluation of ensemble configurations for the analysis and prediction of heavy-rain-producing mesoscale convective systems. Mon. Wea. Rev., 142, 4108–4138, doi:10.1175/MWR-D-13-00357.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., A. J. Clark, M. Xue, and F. Kong, 2013: Factors influencing the development and maintenance of nocturnal heavy-rain-producing convective systems in a storm-scale ensemble. Mon. Wea. Rev., 141, 2778–2801, doi:10.1175/MWR-D-12-00239.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., D. M. Schultz, and J. A. Knox, 2015: Influence of terrain resolution on banded convection in the lee of the Rocky Mountains. Mon. Wea. Rev., 143, 1399–1416, doi:10.1175/MWR-D-14-00255.1.

    • Search Google Scholar
    • Export Citation
  • Sharif, H. O., T. L. Jackson, M. M. Hossain, S. Bin-Shafique, and D. Zane, 2010: Motor vehicle-related flood fatalities in Texas, 1959–2008. J. Transp. Saf. Secur., 2, 325–335, doi:10.1080/19439962.2010.506596.

    • Search Google Scholar
    • Export Citation
  • Sharif, H. O., T. L. Jackson, M. M. Hossain, and D. Zane, 2015: Analysis of flood fatalities in Texas. Nat. Hazards Rev., 16, 04014016, doi:10.1061/(ASCE)NH.1527-6996.0000145.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W., and Coauthors., 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at http://www2.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.]

  • Smith, J. A., M. L. Baeck, J. E. Morrison, and P. Sturdevant-Rees, 2000: Catastrophic rainfall and flooding in Texas. J. Hydrometeor., 1, 5–25, doi:10.1175/1525-7541(2000)001<0005:CRAFIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Soderholm, B., B. Ronalds, and D. J. Kirshbaum, 2014: The evolution of convective storms initiated by an isolated mountain ridge. Mon. Wea. Rev., 142, 1430–1451, doi:10.1175/MWR-D-13-00280.1.

    • Search Google Scholar
    • Export Citation
  • Å pitalar, M., J. J. Gourley, C. Lutoff, P.-E. Kirstetter, M. Brilly, and N. Carr, 2014: Analysis of flash flood parameters and human impacts in the US from 2006 to 2012. J. Hydrol., 519A, 863–870, doi:10.1016/j.jhydrol.2014.07.004.

  • Stevenson, S. N., and R. S. Schumacher, 2014: A 10-year survey of extreme rainfall events in the central and eastern United States using gridded multisensor precipitation analyses. Mon. Wea. Rev., 142, 3147–3162, doi:10.1175/MWR-D-13-00345.1.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., C. A. Davis, and J. D. Tuttle, 2000a: Long-lived mesoconvective vortices and their environment. Part I: Observations from the central United States during the 1998 warm season. Mon. Wea. Rev., 128, 3376–3395, doi:10.1175/1520-0493(2000)128<3376:LLMVAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., C. A. Davis, and W. C. Skamarock, 2000b: Long-lived mesoconvective vortices and their environment. Part II: Induced thermodynamic destabilization in idealized simulations. Mon. Wea. Rev., 128, 3396–3412, doi:10.1175/1520-0493(2000)128<3396:LLMVAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., L. J. Bennett, L. Jay Miller, J. Van Baelen, P. Di Girolamo, A. M. Blyth, and T. J. Hertneky, 2014: An observational and modeling study of the processes leading to deep, moist convection in complex terrain. Mon. Wea. Rev., 142, 2687–2708, doi:10.1175/MWR-D-13-00216.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2533 743 68
PDF Downloads 1248 394 46