A Localized Particle Filter for High-Dimensional Nonlinear Systems

Jonathan Poterjoy Advanced Study Program, National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Jonathan Poterjoy in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper presents a new data assimilation approach based on the particle filter (PF) that has potential for nonlinear/non-Gaussian applications in geoscience. Particle filters provide a Monte Carlo approximation of a system’s probability density, while making no assumptions regarding the underlying error distribution. The proposed method is similar to the PF in that particles—also referred to as ensemble members—are weighted based on the likelihood of observations in order to approximate posterior probabilities of the system state. The new approach, denoted the local PF, extends the particle weights into vector quantities to reduce the influence of distant observations on the weight calculations via a localization function. While the number of particles required for standard PFs scales exponentially with the dimension of the system, the local PF provides accurate results using relatively few particles. In sensitivity experiments performed with a 40-variable dynamical system, the local PF requires only five particles to prevent filter divergence for both dense and sparse observation networks. Comparisons of the local PF and ensemble Kalman filters (EnKFs) reveal advantages of the new method in situations resembling geophysical data assimilation applications. In particular, the new filter demonstrates substantial benefits over EnKFs when observation networks consist of densely spaced measurements that relate nonlinearly to the model state—analogous to remotely sensed data used frequently in weather analyses.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Dr. Jonathan Poterjoy, NCAR, P.O. Box 3000, Boulder, CO 80307. E-mail: poterjoy@ucar.edu

Abstract

This paper presents a new data assimilation approach based on the particle filter (PF) that has potential for nonlinear/non-Gaussian applications in geoscience. Particle filters provide a Monte Carlo approximation of a system’s probability density, while making no assumptions regarding the underlying error distribution. The proposed method is similar to the PF in that particles—also referred to as ensemble members—are weighted based on the likelihood of observations in order to approximate posterior probabilities of the system state. The new approach, denoted the local PF, extends the particle weights into vector quantities to reduce the influence of distant observations on the weight calculations via a localization function. While the number of particles required for standard PFs scales exponentially with the dimension of the system, the local PF provides accurate results using relatively few particles. In sensitivity experiments performed with a 40-variable dynamical system, the local PF requires only five particles to prevent filter divergence for both dense and sparse observation networks. Comparisons of the local PF and ensemble Kalman filters (EnKFs) reveal advantages of the new method in situations resembling geophysical data assimilation applications. In particular, the new filter demonstrates substantial benefits over EnKFs when observation networks consist of densely spaced measurements that relate nonlinearly to the model state—analogous to remotely sensed data used frequently in weather analyses.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Dr. Jonathan Poterjoy, NCAR, P.O. Box 3000, Boulder, CO 80307. E-mail: poterjoy@ucar.edu
Save
  • Ades, M., and P. J. van Leeuwen, 2015: The equivalent-weights particle filter in a high-dimensional system. Quart. J. Roy. Meteor. Soc., 141, 484503, doi:10.1002/qj.2370.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 1996: A method for producing and evaluating probabilistic forecasts from ensemble model integrations. J. Climate, 9, 15181530, doi:10.1175/1520-0442(1996)009<1518:AMFPAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903, doi:10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2007: An adaptive covariance inflation error correction algorithm for ensemble filters. Tellus, 59A, 210224, doi:10.1111/j.1600-0870.2006.00216.x.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2009: Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus, 61A, 7283, doi:10.1111/j.1600-0870.2008.00361.x.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2010: A non-Gaussian ensemble filter update for data assimilation. Mon. Wea. Rev., 138, 41864198, doi:10.1175/2010MWR3253.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Avellano, 2009: The Data Assimilation Research Testbed: A community facility. Bull. Amer. Meteor. Soc., 90, 12831296, doi:10.1175/2009BAMS2618.1.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, T., C. Snyder, and D. Nychka, 2003: Toward a nonlinear ensemble filter for high-dimensional systems. J. Geophys. Res., 108, 8775, doi:10.1029/2002JD002900.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, T., P. Bickel, and B. Li, 2008: Curse-of-dimensionality revisited: Collapse of the particle filter in very large scale systems. Probability and Statistics: Essays in Honor of David A. Freedman, D. Nolan and T. Speed, Eds., Vol. 2, Institute of Mathematical Statistics, 316–334.

  • Bickel, P., B. Li, and T. Bengtsson, 2008: Sharp failure rates for the bootstrap particle filter in high dimensions. Pushing the Limits of Contemporary Statistics: Contributions in Honor of Jayanta K. Ghosh, B. Clarke and S. Ghosal, Eds., Vol. 3, Institute of Mathematical Statistics, 318329.

  • Bishop, C. H., and D. Hodyss, 2011: Adaptive ensemble covariance localization in ensemble 4D-VAR state estimation. Mon. Wea. Rev., 139, 12411255, doi:10.1175/2010MWR3403.1.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., 2005: Ensemble-derived stationary and flow-dependent background-error covariances: Evaluation in a quasi-operational NWP setting. Quart. J. Roy. Meteor. Soc., 131, 10131043, doi:10.1256/qj.04.15.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., P. L. Houtekamer, C. Charette, H. Mitchell, and B. He, 2010: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part II: One-month experiments with real observations. Mon. Wea. Rev., 138, 15671586, doi:10.1175/2009MWR3158.1.

    • Search Google Scholar
    • Export Citation
  • Chorin, A., M. Morzfeld, and X. Tu, 2010: Implicit particle filters for data assimilation. Commun. Appl. Math. Comput. Sci., 5, 221240, doi:10.2140/camcos.2010.5.221.

    • Search Google Scholar
    • Export Citation
  • Clayton, A. M., A. C. Lorenc, and D. M. Barker, 2013: Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met Office. Quart. J. Roy. Meteor. Soc., 139, 14451461, doi:10.1002/qj.2054.

    • Search Google Scholar
    • Export Citation
  • Doucet, A., N. de Freitas, and N. Gordon, Eds., 2001: An introduction to sequential Monte Carlo methods. Sequential Monte Carlo Methods in Practice, Springer-Verlag, 3–14, doi:10.1007/978-1-4757-3437-9_1.

  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162, doi:10.1029/94JC00572.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., and P. J. van Leeuwen, 2000: An ensemble Kalman smoother for nonlinear dynamics. Mon. Wea. Rev., 128, 18521867, doi:10.1175/1520-0493(2000)128<1852:AEKSFN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frei, M., and H. R. Künsch, 2013: Bridging the ensemble Kalman and particle filters. Biometrika, 100, 781800, doi:10.1093/biomet/ast020.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, doi:10.1002/qj.49712555417.

    • Search Google Scholar
    • Export Citation
  • Gordon, N. J., D. J. Salmond, and A. F. M. Smith, 1993: Novel approach to nonlinear/non-Gaussian state estimation. IEE Proc., F, Radar Signal Process., 140, 107113, doi:10.1049/ip-f-2.1993.0015.

    • Search Google Scholar
    • Export Citation
  • Haerter, J. O., S. Hagemann, C. Moseley, and C. Piani, 2011: Climate model bias correction and the role of timescales. Hydrol. Earth Syst. Sci., 15, 10651079, doi:10.5194/hess-15-1065-2011.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and S. J. Colucci, 1996: Random and systematic error in NMC’s short-range Eta ensembles. Preprints, 13th Conf. on Probability and Statistics in the Atmospheric Sciences, San Francisco, CA, Amer. Meteor. Soc., 51–56.

  • Hamill, T. M., and C. Snyder, 2000: A hybrid ensemble Kalman filter-3D variational analysis scheme. Mon. Wea. Rev., 128, 29052919, doi:10.1175/1520-0493(2000)128<2905:AHEKFV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and J. S. Whitaker, 2001: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev., 129, 27762790, doi:10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796811, doi:10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 2001: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 129, 123137, doi:10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ines, A. V. M., and J. W. Hansen, 2006: Bias correction of daily GCM rainfall for crop simulation studies. Agric. For. Meteor., 138, 4453, doi:10.1016/j.agrformet.2006.03.009.

    • Search Google Scholar
    • Export Citation
  • Kuhl, D. D., T. E. Rosmond, C. H. Bishop, J. McLay, and N. L. Baker, 2013: Comparison of hybrid ensemble/4DVar and 4DVar within the NAVDAS-AR data assimilation framework. Mon. Wea. Rev., 141, 27402758, doi:10.1175/MWR-D-12-00182.1.

    • Search Google Scholar
    • Export Citation
  • Lei, J., and P. Bickel, 2011: A moment matching ensemble filter for nonlinear non-Gaussian data assimilation. Mon. Wea. Rev., 139, 39643973, doi:10.1175/2011MWR3553.1.

    • Search Google Scholar
    • Export Citation
  • Lei, J., P. Bickel, and C. Snyder, 2010: Comparison of ensemble Kalman filters under non-Gaussianity. Mon. Wea. Rev., 138, 12931306, doi:10.1175/2009MWR3133.1.

    • Search Google Scholar
    • Export Citation
  • Liu, C., Q. Xiao, and B. Wang, 2008: An ensemble-based four-dimensional variational data assimilation scheme. Part I: Technical formulation and preliminary test. Mon. Wea. Rev., 136, 33633373, doi:10.1175/2008MWR2312.1.

    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., 2003: The potential of the ensemble Kalman filter for NWP: A comparison with 4D-Var. Quart. J. Roy. Meteor. Soc., 129, 31833203, doi:10.1256/qj.02.132.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1996: Predictability: A problem partly solved. Proc. Seminar on Predictability, Vol. 1, Reading, United Kingdom, ECMWF, 1–18.

  • Lorenz, E. N., and K. A. Emanuel, 1998: Optimal sites for supplementary weather observations: Simulation with a small model. J. Atmos. Sci., 55, 399414, doi:10.1175/1520-0469(1998)055<0399:OSFSWO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., D. Qi, and T. P. Sapsis, 2014: Blended particle filters for large-dimensional chaotic dynamical systems. Proc. Natl. Acad. Sci. USA, 111, 75117516, doi:10.1073/pnas.1405675111.

    • Search Google Scholar
    • Export Citation
  • McGinnis, S., D. Nychka, and L. O. Mearns, 2015: A new distribution mapping technique for climate model bias correction. Machine Learning and Data Mining Approaches to Climate Science, V. Lakshmanan et al., Eds., Springer, 91–99, doi:10.1007/978-3-319-17220-0_9.

  • Mitchell, H. L., P. L. Houtekamer, and G. Pellerin, 2002: Ensemble size, balance, and model-error representation in an ensemble Kalman filter. Mon. Wea. Rev., 130, 27912808, doi:10.1175/1520-0493(2002)130<2791:ESBAME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Miyoshi, T., K. Kondo, and T. Imamura, 2014: The 10,240-member ensemble Kalman filtering with an intermediate AGCM. Geophys. Res. Lett., 41, 52645271, doi:10.1002/2014GL060863.

    • Search Google Scholar
    • Export Citation
  • Nakano, S., G. Ueno, and T. Higuchi, 2007: Merging particle filter for sequential data assimilation. Nonlinear Processes Geophys., 14, 395408, doi:10.5194/npg-14-395-2007.

    • Search Google Scholar
    • Export Citation
  • Piani, C., J. O. Haerter, and E. Coppola, 2010: Statistical bias correction for daily precipitation in regional climate models over Europe. Theor. Appl. Climatol., 99, 187192, doi:10.1007/s00704-009-0134-9.

    • Search Google Scholar
    • Export Citation
  • Pires, C. A., O. Talagrand, and M. Bocquet, 2010: Diagnosis and impacts of non-Gaussianity of innovations in data assimilation. Physica D, 239, 17011717, doi:10.1016/j.physd.2010.05.006.

    • Search Google Scholar
    • Export Citation
  • Reich, S., 2013: A nonparametric ensemble transform method for Bayesian inference. SIAM J. Sci. Comput., 35, A2013A2024, doi:10.1137/130907367.

    • Search Google Scholar
    • Export Citation
  • Slivinski, L., E. Spiller, A. Apte, and B. Sandstede, 2015: A hybrid particle-ensemble Kalman filter for Lagrangian data assimilation. Mon. Wea. Rev., 143, 195211, doi:10.1175/MWR-D-14-00051.1.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., T. Bengtsson, P. Bickel, and J. Anderson, 2008: Obstacles to high-dimensional particle filtering. Mon. Wea. Rev., 136, 46294640, doi:10.1175/2008MWR2529.1.

    • Search Google Scholar
    • Export Citation
  • Stewart, L. M., S. L. Dance, and N. K. Nichols, 2008: Correlated observation errors in data assimilation. Int. J. Numer. Methods Fluids, 56, 15211527, doi:10.1002/fld.1636.

    • Search Google Scholar
    • Export Citation
  • Talagrand, O., R. Vautard, and B. Strauss, 1997: Evaluation of probabilistic prediction systems. Proc. ECMWF Workshop on Predictability, Reading, United Kingdom, ECMWF, 125.

  • van Leeuwen, P. J., 2003: A variance-minimizing filter for large-scale applications. Mon. Wea. Rev., 131, 20712084, doi:10.1175/1520-0493(2003)131<2071:AVFFLA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • van Leeuwen, P. J., 2009: Particle filtering in geophysical systems. Mon. Wea. Rev., 137, 40894114, doi:10.1175/2009MWR2835.1.

  • van Leeuwen, P. J., 2010: Nonlinear data assimilation in geosciences: An extremely efficient particle filter. Quart. J. Roy. Meteor. Soc., 136, 19911999, doi:10.1002/qj.699.

    • Search Google Scholar
    • Export Citation
  • Wang, X., and T. Lei, 2014: GSI-based four-dimensional ensemble-variational (4DEnsVar) data assimilation: Formulation and single-resolution experiments with real data for NCEP Global Forecast System. Mon. Wea. Rev., 142, 33033325, doi:10.1175/MWR-D-13-00303.1.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2012: Evaluating methods to account for system errors in ensemble data assimilation. Mon. Wea. Rev., 140, 30783089, doi:10.1175/MWR-D-11-00276.1.

    • Search Google Scholar
    • Export Citation
  • Xiong, X., I. M. Navon, and B. Uzunoglu, 2006: A note on the particle filter with posterior Gaussian resampling. Tellus, 58A, 456460, doi:10.3402/tellusa.v58i4.14798.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., C. Snyder, and J. Sun, 2004: Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Wea. Rev., 132, 12381253, doi:10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., M. Zhang, and J. A. Hansen, 2009: Coupling ensemble Kalman filter with four-dimensional variational data assimilation. Adv. Atmos. Sci., 26, 18, doi:10.1007/s00376-009-0001-8.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1550 481 46
PDF Downloads 1352 400 50