Importance of Latent Heating in Mesocyclones for the Decay of Cold Air Outbreaks: A Numerical Process Study from the Pacific Sector of the Southern Ocean

Lukas Papritz Institute for Atmospheric and Climate Science, and Center for Climate Systems Modeling, ETH Zürich, Zürich, Switzerland

Search for other papers by Lukas Papritz in
Current site
Google Scholar
PubMed
Close
and
Stephan Pfahl Institute for Atmospheric and Climate Science, ETH Zürich, Zürich, Switzerland

Search for other papers by Stephan Pfahl in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study the dynamical mechanisms shaping the evolution of a marine cold air outbreak (CAO) that occurred over the Ross, Amundsen, and Bellingshausen Seas in June 2010 are investigated in an isentropic framework. The drainage of cold air from West Antarctica into the interior Ross Sea, its subsequent export, and the formation of a dome of cold air off the sea ice edge are shown to be intimately linked to a lower-tropospheric cyclone, as well as the cyclonic breaking of an upper-level potential vorticity trough. The dome formation is accompanied by an extreme deepening of the boundary layer, whose top reaches to the height of the low-lying tropopause within the trough, potentially allowing for deep stratosphere–troposphere exchange. A crucial finding of this study is that the decay of the CAO is essentially driven by the circulation associated with a train of mesocyclones and the release of latent heat in their warm sectors. Sensitivity experiments with switched off fluxes of sensible and latent heat reveal that the erosion of the CAO air mass depends critically on the moistening by latent heat fluxes, whereby the synergistic effects of sensible heat fluxes and moist processes amplify the erosion. Within the CAO air mass, the erosion is inhibited by cloud-top radiative cooling and the dissolution of clouds by the entrainment of dryer air. These findings potentially have implications for the representation of CAOs in coarse-resolution climate models.

Corresponding author address: Lukas Papritz, Geophysical Institute, University of Bergen, Allegaten 70, 5007 Bergen, Norway. E-mail: lukas.papritz@uib.no

Current affiliation: Geophysical Institute, University of Bergen, Bergen, Norway.

Abstract

In this study the dynamical mechanisms shaping the evolution of a marine cold air outbreak (CAO) that occurred over the Ross, Amundsen, and Bellingshausen Seas in June 2010 are investigated in an isentropic framework. The drainage of cold air from West Antarctica into the interior Ross Sea, its subsequent export, and the formation of a dome of cold air off the sea ice edge are shown to be intimately linked to a lower-tropospheric cyclone, as well as the cyclonic breaking of an upper-level potential vorticity trough. The dome formation is accompanied by an extreme deepening of the boundary layer, whose top reaches to the height of the low-lying tropopause within the trough, potentially allowing for deep stratosphere–troposphere exchange. A crucial finding of this study is that the decay of the CAO is essentially driven by the circulation associated with a train of mesocyclones and the release of latent heat in their warm sectors. Sensitivity experiments with switched off fluxes of sensible and latent heat reveal that the erosion of the CAO air mass depends critically on the moistening by latent heat fluxes, whereby the synergistic effects of sensible heat fluxes and moist processes amplify the erosion. Within the CAO air mass, the erosion is inhibited by cloud-top radiative cooling and the dissolution of clouds by the entrainment of dryer air. These findings potentially have implications for the representation of CAOs in coarse-resolution climate models.

Corresponding author address: Lukas Papritz, Geophysical Institute, University of Bergen, Allegaten 70, 5007 Bergen, Norway. E-mail: lukas.papritz@uib.no

Current affiliation: Geophysical Institute, University of Bergen, Bergen, Norway.

Save
  • Baldauf, M., A. Seifert, J. Förstner, D. Majewski, M. Raschendorfer, and T. Reinhardt, 2011: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Mon. Wea. Rev., 139, 38873905, doi:10.1175/MWR-D-10-05013.1.

    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., K. D. Williams, P. R. Field, and A. P. Lock, 2012: The surface downwelling solar radiation surplus over the Southern Ocean in the Met Office model: The role of midlatitude cyclone clouds. J. Climate, 25, 74677486, doi:10.1175/JCLI-D-11-00702.1.

    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., and Coauthors, 2014: Origins of the solar radiation biases over the Southern Ocean in CFMIP2 models. J. Climate, 27, 4156, doi:10.1175/JCLI-D-13-00169.1.

    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T., and E. Kolstad, 2010: Climatology and variability of Southern Hemisphere marine cold-air outbreaks. Tellus, 62A, 202208, doi:10.1111/j.1600-0870.2009.00431.x.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., J. F. Carrasco, and C. R. Stearns, 1992: Satellite observations of katabatic-wind propagation for great distances across the Ross Ice Shelf. Mon. Wea. Rev., 120, 19401949, doi:10.1175/1520-0493(1992)120<1940:SOOKWP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brümmer, B., 1996: Boundary-layer modification in wintertime cold-air outbreaks from the Arctic sea ice. Bound.-Layer Meteor., 80, 109125, doi:10.1007/BF00119014.

    • Search Google Scholar
    • Export Citation
  • Brümmer, B., 1997: Boundary layer mass, water, and heat budgets in wintertime cold-air outbreaks from the Arctic sea ice. Mon. Wea. Rev., 125, 18241837, doi:10.1175/1520-0493(1997)125<1824:BLMWAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brümmer, B., 1999: Roll and cell convection in wintertime Arctic cold-air outbreaks. J. Atmos. Sci., 56, 26132636, doi:10.1175/1520-0469(1999)056<2613:RACCIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Businger, S., and R. J. Reed, 1989: Cyclogenesis in cold air masses. Wea. Forecasting, 4, 133156, doi:10.1175/1520-0434(1989)004<0133:CICAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carleton, A. M., and Y. Song, 1997: Synoptic climatology, and intrahemispheric associations, of cold air mesocyclones in the Australasian sector. J. Geophys. Res., 102, 13 87313 887, doi:10.1029/96JD03357.

    • Search Google Scholar
    • Export Citation
  • Coggins, J. H. J., A. J. McDonald, and B. Jolly, 2014: Synoptic climatology of the Ross Ice Shelf and Ross Sea region of Antarctica: k-means clustering and validation. Int. J. Climatol., 34, 23302348, doi:10.1002/joc.3842.

    • Search Google Scholar
    • Export Citation
  • Condron, A., and I. A. Renfrew, 2013: The impact of polar mesoscale storms on northeast Atlantic Ocean circulation. Nat. Geosci., 6, 3437, doi:10.1038/ngeo1661.

    • Search Google Scholar
    • Export Citation
  • Condron, A., G. R. Bigg, and I. A. Renfrew, 2006: Polar mesoscale cyclones in the northeast Atlantic: Comparing climatologies from ERA-40 and satellite imagery. Mon. Wea. Rev., 134, 15181533, doi:10.1175/MWR3136.1.

    • Search Google Scholar
    • Export Citation
  • Cook, P. A., and I. A. Renfrew, 2015: Aircraft-based observations of air-sea turbulent fluxes around the British Isles. Quart. J. Roy. Meteor. Soc., 141, 139152, doi:10.1002/qj.2345.

    • Search Google Scholar
    • Export Citation
  • Dee, D., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Doms, G., and Coauthors, 2011: A description of the nonhydrostatic regional COSMO model. Part II: Physical parameterization. Consortium for Small-Scale Modelling Tech. Rep. LM_F90 4.20, 154 pp. [Available online at http://www.cosmo-model.org/content/model/documentation/core/cosmoPhysParamtr.pdf.]

  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of air-sea fluxes for tropical ocean-global atmosphere coupled-ocean atmosphere response experiment. J. Geophys. Res., 101, 37473764, doi:10.1029/95JC03205.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, doi:10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Forbes, G. S., and W. D. Lottes, 1985: Classification of mesoscale vortices in polar airstreams and the influence of the large-scale environment on their evolutions. Tellus, 37A, 132155, doi:10.1111/j.1600-0870.1985.tb00276.x.

    • Search Google Scholar
    • Export Citation
  • Green, J. S. A., 1960: A problem in baroclinic stability. Quart. J. Roy. Meteor. Soc., 86, 237251, doi:10.1002/qj.49708636813.

  • Green, J. S. A., 1979: Topics in dynamical meteorology: 8. Trough-ridge systems as slantwise convection. Weather, 34, 210, doi:10.1002/j.1477-8696.1979.tb03366.x.

    • Search Google Scholar
    • Export Citation
  • Grossman, R. L., and A. K. Betts, 1990: Air–sea interaction during an extreme cold air outbreak from the eastern coast of the United States. Mon. Wea. Rev., 118, 324342, doi:10.1175/1520-0493(1990)118<0324:AIDAEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gryschka, M., J. Fricke, and S. Raasch, 2014: On the impact of forced roll convection on vertical turbulent transport in cold air outbreaks. J. Geophys. Res. Atmos., 119, 12 51312 532, doi:10.1002/2014JD022160.

    • Search Google Scholar
    • Export Citation
  • Hartmann, J., C. Kottmeier, and S. Raasch, 1997: Roll vortices and boundary-layer development during a cold air outbreak. Bound.-Layer Meteor., 84, 4565, doi:10.1023/A:1000392931768.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and G. J. Hakim, 2012: An Introduction to Dynamic Meteorology. Academic Press, 532 pp.

  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, doi:10.1002/qj.49711147002.

    • Search Google Scholar
    • Export Citation
  • Irving, D., I. Simmonds, and K. Keay, 2010: Mesoscale cyclone activity over the ice-free Southern Ocean: 1999–2008. J. Climate, 23, 54045420, doi:10.1175/2010JCLI3628.1.

    • Search Google Scholar
    • Export Citation
  • Isachsen, P. E., M. Drivdal, S. Eastwood, Y. Gusdal, G. Noer, and Ø. Saetra, 2013: Observations of the ocean response to cold air outbreaks and polar lows over the Nordic Seas. Geophys. Res. Lett., 40, 36673671, doi:10.1002/grl.50705.

    • Search Google Scholar
    • Export Citation
  • Iwasaki, T., T. Shoji, Y. Kanno, M. Sawada, M. Ujiie, and K. Takaya, 2014: Isentropic analysis of polar cold airmass streams in the Northern Hemispheric winter. J. Atmos. Sci., 71, 22302243, doi:10.1175/JAS-D-13-058.1.

    • Search Google Scholar
    • Export Citation
  • Jensen, T. G., T. J. Campbell, R. A. Allard, R. J. Small, and T. A. Smith, 2011: Turbulent heat fluxes during an intense cold-air outbreak over the Kuroshio Extension Region: Results from a high-resolution coupled atmosphere–ocean model. Ocean Dyn., 61, 657674, doi:10.1007/s10236-011-0380-0.

    • Search Google Scholar
    • Export Citation
  • Kolstad, E. W., 2011: A global climatology of favourable conditions for polar lows. Quart. J. Roy. Meteor. Soc., 137, 17491761, doi:10.1002/qj.888.

    • Search Google Scholar
    • Export Citation
  • Kolstad, E. W., and T. J. Bracegirdle, 2008: Marine cold-air outbreaks in the future: An assessment of IPCC AR4 model results for the Northern Hemisphere. Climate Dyn., 30, 871885, doi:10.1007/s00382-007-0331-0.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., and D. H. Bromwich, 1997: Dynamics of the katabatic wind confluence zone near Siple Coast, West Antarctica. J. Appl. Meteor., 36, 97118, doi:10.1175/1520-0450(1997)036<0097:DOTKWC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Louis, J., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187202, doi:10.1007/BF00117978.

    • Search Google Scholar
    • Export Citation
  • Lüpkes, C., and K. H. Schlünzen, 1996: Modelling the Arctic convective boundary-layer with different turbulence parameterizations. Bound.-Layer Meteor., 79, 107130, doi:10.1007/BF00120077.

    • Search Google Scholar
    • Export Citation
  • Nigro, M. A., and J. J. Cassano, 2014: Identification of surface wind patterns over the Ross Ice Shelf, Antarctica, using self-organizing maps. Mon. Wea. Rev., 142, 23612378, doi:10.1175/MWR-D-13-00382.1.

    • Search Google Scholar
    • Export Citation
  • O’Connor, W. P., D. H. Bromwich, and J. F. Carrasco, 1994: Cyclonically forced barrier winds along the Transantarctic Mountains near Ross Island. Mon. Wea. Rev., 122, 137150, doi:10.1175/1520-0493(1994)122<0137:CFBWAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pagowski, M., and G. W. K. Moore, 2001: A numerical study of an extreme cold-air outbreak over the Labrador Sea: Sea ice, air–sea interaction, and development of polar lows. Mon. Wea. Rev., 129, 4772, doi:10.1175/1520-0493(2001)129<0047:ANSOAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Papritz, L., S. Pfahl, H. Sodemann, and H. Wernli, 2015: A climatology of cold air outbreaks and their impact on air–sea heat fluxes in the high-latitude South Pacific. J. Climate, 28, 342364, doi:10.1175/JCLI-D-14-00482.1.

    • Search Google Scholar
    • Export Citation
  • Parish, T. R., and J. J. Cassano, 2003a: Diagnosis of the katabatic wind influence on the wintertime Antarctic surface wind field from numerical simulations. Mon. Wea. Rev., 131, 11281139, doi:10.1175/1520-0493(2003)131<1128:DOTKWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Parish, T. R., and J. J. Cassano, 2003b: The role of katabatic winds on the Antarctic surface wind regime. Mon. Wea. Rev., 131, 317333, doi:10.1175/1520-0493(2003)131<0317:TROKWO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Parish, T. R., J. J. Cassano, and M. W. Seefeldt, 2006: Characteristics of the Ross Ice Shelf air stream as depicted in Antarctic Mesoscale Prediction System simulations. J. Geophys. Res., 111, D12109, doi:10.1029/2005JD006185.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E., and J. Turner, 2003: Polar Lows: Mesoscale Weather Systems in the Polar Regions. Cambridge University Press, 612 pp.

  • Renfrew, I. A., and G. W. K. Moore, 1999: An extreme cold-air outbreak over the Labrador Sea: Roll vortices and air–sea interaction. Mon. Wea. Rev., 127, 23792394, doi:10.1175/1520-0493(1999)127<2379:AECAOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schröder, D., G. Heinemann, and S. Willmes, 2011: The impact of a thermodynamic sea-ice module in the COSMO numerical weather prediction model on simulations for the Laptev Sea, Siberian Arctic. Polar Res., 30, 6334, doi:10.3402/polar.v30i0.6334.

    • Search Google Scholar
    • Export Citation
  • Shoji, T., Y. Kanno, T. Iwasaki, and K. Takaya, 2014: An isentropic analysis of the temporal evolution of East Asian cold air outbreaks. J. Climate, 27, 93379348, doi:10.1175/JCLI-D-14-00307.1.

    • Search Google Scholar
    • Export Citation
  • Škerlak, B., M. Sprenger, and H. Wernli, 2014: A global climatology of stratosphere–troposphere exchange using the ERA-Interim data set from 1979 to 2011. Atmos. Chem. Phys., 14, 913937, doi:10.5194/acp-14-913-2014.

    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., and J. B. Edson, 2009: Large-eddy simulation of moist convection during a cold air outbreak over the Gulf Stream. J. Atmos. Sci., 66, 12741293, doi:10.1175/2008JAS2755.1.

    • Search Google Scholar
    • Export Citation
  • Steppeler, J., G. Doms, U. Schättler, H. W. Bitzer, A. Gassmann, U. Damrath, and G. Gregoric, 2003: Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteor. Atmos. Phys., 82, 7596, doi:10.1007/s00703-001-0592-9.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2008: Freshwater transport estimates and the global overturning circulation: Shallow, deep and throughflow components. Prog. Oceanogr., 78, 257303, doi:10.1016/j.pocean.2008.05.001.

    • Search Google Scholar
    • Export Citation
  • Terpstra, A., T. Spengler, and R. W. Moore, 2015: Idealised simulations of polar low development in an Arctic moist-baroclinic environment. Quart. J. Roy. Meteor. Soc., 141, 19871996, doi:10.1002/qj.2507.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, doi:10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vihma, T., and B. Brümmer, 2002: Observations and modelling of the on-ice and off-ice air flow over the Northern Baltic Sea. Bound.-Layer Meteor., 103, 127, doi:10.1023/A:1014566530774.

    • Search Google Scholar
    • Export Citation
  • Wacker, U., K. V. Jayaraman Potty, C. Lüpkes, J. Hartmann, and M. Raschendorfer, 2005: A case study on a polar cold air outbreak over Fram Strait using a mesoscale weather prediction model. Bound.-Layer Meteor., 117, 301336, doi:10.1007/s10546-005-2189-1.

    • Search Google Scholar
    • Export Citation
  • Williams, K. D., and Coauthors, 2013: The Transpose-AMIP II experiment and its application to the understanding of Southern Ocean cloud biases in climate models. J. Climate, 26, 32583274, doi:10.1175/JCLI-D-12-00429.1.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., J. Patoux, and C. Li, 2009: Satellite-based midlatitude cyclone statistics over the Southern Ocean: 2. Tracks and surface fluxes. J. Geophys. Res., 114, D04106, doi:10.1029/2008JD010874.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 593 115 9
PDF Downloads 613 82 4