Lightning in Eastern North Pacific Tropical Cyclones: A Comparison to the North Atlantic

Stephanie N. Stevenson University at Albany, State University of New York, Albany, New York

Search for other papers by Stephanie N. Stevenson in
Current site
Google Scholar
PubMed
Close
,
Kristen L. Corbosiero University at Albany, State University of New York, Albany, New York

Search for other papers by Kristen L. Corbosiero in
Current site
Google Scholar
PubMed
Close
, and
Sergio F. Abarca Environmental Modeling Center, I.M. Systems Group, and NOAA/NWS/NCEP, College Park, Maryland

Search for other papers by Sergio F. Abarca in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

As global lightning detection has become more reliable, many studies have analyzed the characteristics of lightning in tropical cyclones (TCs); however, very few studies have examined flashes in eastern North Pacific (ENP) basin TCs. This study uses lightning detected by the World Wide Lightning Location Network (WWLLN) to explore the relationship between lightning and sea surface temperatures (SSTs), the diurnal cycle, the storm motion and vertical wind shear vectors, and the 24-h intensity change in ENP TCs during 2006–14. The results are compared to storms in the North Atlantic (NA).

Higher flash counts were found over warmer SSTs, with 28°–30°C SSTs experiencing the highest 6-hourly flash counts. Most TC lightning flashes occurred at night and during the early morning hours, with minimal activity after local noon. The ENP peak (0800 LST) was slightly earlier than the NA (0900–1100 LST). Despite similar storm motion directions and differing vertical wind shear directions in the two basins, shear dominated the overall azimuthal lightning distribution. Lightning was most often observed downshear left in the inner core (0–100 km) and downshear right in the outer rainbands (100–300 km). A caveat to these relationships were fast-moving ENP TCs with opposing shear and motion vectors, in which lightning peaked downmotion (upshear) instead. Finally, similar to previous studies, higher flash densities in the inner core (outer rainbands) were associated with nonintensifying (intensifying) TCs. This last result constitutes further evidence in the efforts to associate lightning activity to TC intensity forecasting.

Corresponding author address: Stephanie N. Stevenson, Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222. E-mail: sstevenson@albany.edu

Abstract

As global lightning detection has become more reliable, many studies have analyzed the characteristics of lightning in tropical cyclones (TCs); however, very few studies have examined flashes in eastern North Pacific (ENP) basin TCs. This study uses lightning detected by the World Wide Lightning Location Network (WWLLN) to explore the relationship between lightning and sea surface temperatures (SSTs), the diurnal cycle, the storm motion and vertical wind shear vectors, and the 24-h intensity change in ENP TCs during 2006–14. The results are compared to storms in the North Atlantic (NA).

Higher flash counts were found over warmer SSTs, with 28°–30°C SSTs experiencing the highest 6-hourly flash counts. Most TC lightning flashes occurred at night and during the early morning hours, with minimal activity after local noon. The ENP peak (0800 LST) was slightly earlier than the NA (0900–1100 LST). Despite similar storm motion directions and differing vertical wind shear directions in the two basins, shear dominated the overall azimuthal lightning distribution. Lightning was most often observed downshear left in the inner core (0–100 km) and downshear right in the outer rainbands (100–300 km). A caveat to these relationships were fast-moving ENP TCs with opposing shear and motion vectors, in which lightning peaked downmotion (upshear) instead. Finally, similar to previous studies, higher flash densities in the inner core (outer rainbands) were associated with nonintensifying (intensifying) TCs. This last result constitutes further evidence in the efforts to associate lightning activity to TC intensity forecasting.

Corresponding author address: Stephanie N. Stevenson, Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222. E-mail: sstevenson@albany.edu
Save
  • Abarca, S. F., K. L. Corbosiero, and T. J. Galarneau Jr., 2010: An evaluation of the Worldwide Lightning Location Network (WWLLN) using the National Lightning Detection Network (NLDN) as ground truth. J. Geophys. Res., 115, D18206, doi:10.1029/2009JD013411.

  • Abarca, S. F., K. L. Corbosiero, and D. Vollaro, 2011: The World Wide Lightning Location Network and convective activity in tropical cyclones. Mon. Wea. Rev., 139, 175191, doi:10.1175/2010MWR3383.1.

    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., and Coauthors, 2000: The Optical Transient Detector (OTD): Instrument characteristics and cross-sensor validation. J. Atmos. Oceanic Technol., 17, 441458, doi:10.1175/1520-0426(2000)017<0441:TOTDOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., W. J. Koshak, and R. J. Blakeslee, 2002: Performance assessment of the Optical Transient Detector and Lightning Imaging Sensor. Part I: Predicted diurnal variability. J. Atmos. Oceanic Technol., 19, 13181332, doi:10.1175/1520-0426(2002)019<1318:PAOTOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bowman, K. P., and M. D. Fowler, 2015: The diurnal cycle of precipitation in tropical cyclones. J. Climate, 28, 53255334, doi:10.1175/JCLI-D-14-00804.1.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. W. Robertson, A. G. Barnston, and M. Ghil, 2008: Clustering of eastern North Pacific tropical cyclone tracks: ENSO and MJO effects. Geochem. Geophys. Geosyst., 9, Q06V05, doi:10.1029/2007GC001861.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., and E. J. Zipser, 1999: Relationship between tropical cyclone intensity and satellite-based indicators of inner core convection: 85-GHz ice-scattering signature and lightning. Mon. Wea. Rev., 127, 103123, doi:10.1175/1520-0493(1999)127<0103:RBTCIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., D. E. Buechler, and R. J. Blakeslee, 2014: Gridded lightning climatology from TRMM-LIS and OTD: Dataset description. Atmos. Res., 135–136, 404414, doi:10.1016/j.atmosres.2012.06.028.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., J. A. Knaff, and F. D. Marks Jr., 2006: Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM. Mon. Wea. Rev., 134, 31903208, doi:10.1175/MWR3245.1.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 21102123, doi:10.1175/1520-0493(2002)130<2110:TEOVWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2003: The relationship between storm motion, vertical wind shear, and convective asymmetries in tropical cyclones. J. Atmos. Sci., 60, 366376, doi:10.1175/1520-0469(2003)060<0366:TRBSMV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., M. J. Dickinson, and L. F. Bosart, 2009: The contribution of eastern North Pacific tropical cyclones to the rainfall climatology of the southwest United States. Mon. Wea. Rev., 137, 24152435, doi:10.1175/2009MWR2768.1.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., and M. J. Murphy, 2009: An overview of lightning locating systems: History, techniques, and data uses, with an in depth look at the U.S. NLDN. IEEE Trans. Electromag. Compat., 51, 499518, doi:10.1109/TEMC.2009.2023450.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., M. J. Murphy, E. A. Bardo, W. L. Hiscox, R. B. Pyle, and A. E. Pifer, 1998: A combined TOA/MDF technology upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res., 103, 90359044, doi:10.1029/98JD00153.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., R. B. Pyle, and G. Fournier, 1999: An integrated North American lightning detection network. Preprints, 11th Int. Conf. on Atmospheric Electricity, Guntersville, AL, Amer. Meteor. Soc., 218–221.

  • DeMaria, M., and J. Kaplan, 1994: A Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic basin. Wea. Forecasting, 9, 209220, doi:10.1175/1520-0434(1994)009<0209:ASHIPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., R. T. DeMaria, J. A. Knaff, and D. Molenar, 2012: Tropical cyclone lightning and rapid intensity change. Mon. Wea. Rev., 140, 18281842, doi:10.1175/MWR-D-11-00236.1.

    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., C. D. Thorncroft, and C. S. Velden, 2014: The tropical cyclone diurnal cycle of mature hurricanes. Mon. Wea. Rev., 142, 39003919, doi:10.1175/MWR-D-13-00191.1.

    • Search Google Scholar
    • Export Citation
  • Farfán, L. M., E. J. Alfaro, and T. Cavazos, 2013: Characteristics of tropical cyclones making landfall on the Pacific coast of Mexico: 1970–2010. Atmósfera, 26, 163182, doi:10.1016/S0187-6236(13)71070-1.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., 1977: The structure and energetics of the tropical cyclone. I. Storm structure. Mon. Wea. Rev., 105, 11191135, doi:10.1175/1520-0493(1977)105<1119:TSAEOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fu, R., A. D. Del Genio, and W. B. Rossow, 1994: Influence of ocean surface conditions on atmospheric vertical thermodynamic structure and deep convection. J. Climate, 7, 10921108, doi:10.1175/1520-0442(1994)007<1092:IOOSCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gao, S., and X. Li, 2008: Diurnal variations in tropical oceanic convection. Cloud-Resolving Modeling of Convective Processes, Springer-Dordrecht, 121–136.

  • Goodman, S. J., and Coauthors, 2013: The GOES-R Geostationary Lightning Mapper (GLM). Atmos. Res., 125–126, 3449, doi:10.1016/j.atmosres.2013.01.006.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, doi:10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., and R. W. Jacobson Jr., 1977: Diurnal variation of deep cumulus convection. Mon. Wea. Rev., 105, 11711188, doi:10.1175/1520-0493(1977)105<1171:DVODCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holle, R. L., and M. J. Murphy, 2015: Lightning in the North American monsoon: An exploratory climatology. Mon. Wea. Rev., 143, 19701977, doi:10.1175/MWR-D-14-00363.1.

    • Search Google Scholar
    • Export Citation
  • Hutchins, M. L., R. H. Holzworth, K. S. Virts, J. M. Wallace, and S. Heckman, 2013: Radiated VLF energy differences of land and oceanic lightning. Geophys. Res. Lett., 40, 23902394, doi:10.1002/grl.50406.

    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., P. A. Arkin, and M. Morrissey, 1994: An examination of the diurnal cycle in oceanic tropical rainfall using satellite and in situ data. Mon. Wea. Rev., 122, 22962311, doi:10.1175/1520-0493(1994)122<2296:AEOTDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 1995: The evolution of vorticies in vertical shear. I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121, 821851, doi:10.1002/qj.49712152406.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., S. P. Longmore, and D. A. Molenar, 2014: An objective satellite-based tropical cyclone size climatology. J. Climate, 27, 455476, doi:10.1175/JCLI-D-13-00096.1.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., 2002: Daily hurricane variability inferred from GOES infrared imagery. Mon. Wea. Rev., 130, 22602270, doi:10.1175/1520-0493(2002)130<2260:DHVIFG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kucienska, B., G. B. Raga, and V. M. Torres-Puente, 2012: Climatology of precipitation and lightning over the Pacific coast of southern Mexico retrieved from Tropical Rainfall Measuring Mission satellite products and World Wide Lightning Location Network data. Int. J. Remote Sens., 33, 28312850, doi:10.1080/01431161.2011.621905.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, doi:10.1175/MWR-D-12-00254.1.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., H.-T. Wu, and S. Bony, 1997: The role of large-scale atmospheric circulation in the relationship between tropical convection and sea surface temperature. J. Climate, 10, 381392, doi:10.1175/1520-0442(1997)010<0381:TROLSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lay, E. H., R. H. Holzworth, C. J. Rodger, J. N. Thomas, O. Pinto Jr., and R. L. Dowden, 2004: WWLL global lightning detection system: Regional validation study in Brazil. Geophys. Res. Lett., 31, L03102, doi:10.1029/2003GL018882.

  • Lay, E. H., A. R. Jacobson, R. H. Holzworth, C. J. Rodger, and R. L. Dowden, 2007: Local time variation in land/ocean lightning flash density as measured by the World Wide Lightning Location Network. J. Geophys. Res., 112, D13111, doi:10.1029/2006JD007944.

  • Leary, L. A., and E. A. Ritchie, 2009: Lightning flash rates as an indicator of tropical cyclone genesis in the eastern North Pacific. Mon. Wea. Rev., 137, 34563470, doi:10.1175/2009MWR2822.1.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., P. Moore, and V. Idone, 1999: Convective structure of hurricanes as revealed by lightning locations. Mon. Wea. Rev., 127, 520534, doi:10.1175/1520-0493(1999)127<0520:CSOHAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., D. Vollaro, S. Skubis, and M. Dickinson, 2000: Origins and mechanisms of eastern Pacific tropical cyclogenesis: A case study. Mon. Wea. Rev., 128, 125139, doi:10.1175/1520-0493(2000)128<0125:OAMOEP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16, 14561475, doi:10.1175/1520-0442-16.10.1456.

    • Search Google Scholar
    • Export Citation
  • Nolan, D., Y. Moon, and D. P. Stern, 2007: Tropical cyclone intensification from asymmetric convection: Energetics and efficiency. J. Atmos. Sci., 64, 33773405, doi:10.1175/JAS3988.1.

    • Search Google Scholar
    • Export Citation
  • Pan, L., X. Qie, D. Liu, D. Wang, and J. Yang, 2010: The lightning activities in super typhoons over the Northwest Pacific. Sci. China Earth Sci., 53, 12411248, doi:10.1007/s11430-010-3034-z.

    • Search Google Scholar
    • Export Citation
  • Pan, L., X. Qie, and D. Wang, 2014: Lightning activity and its relation to the intensity of typhoons over the Northwest Pacific Ocean. Adv. Atmos. Sci., 31, 581592, doi:10.1007/s00376-013-3115-y.

    • Search Google Scholar
    • Export Citation
  • Price, C., M. Asfur, and Y. Yair, 2009: Maximum hurricane intensity preceded by increase in lightning frequency. Nat. Geosci., 2, 329332, doi:10.1038/ngeo477.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, and L. D. Grasso, 2004: A new look at the problem of tropical cyclones in vertical shear flow: Vortex resiliency. J. Atmos. Sci., 61, 322, doi:10.1175/1520-0469(2004)061<0003:ANLATP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and D. C. Marsico, 1993: An improved real-time global sea surface temperature analysis. J. Climate, 6, 114119, doi:10.1175/1520-0442(1993)006<0114:AIRTGS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rodger, C. J., S. Werner, J. B. Brundell, E. H. Lay, N. R. Thomson, R. H. Holzworth, and R. L. Dowden, 2006: Detection efficiency of the VLF World-Wide Lightning Location Network (WWLLN): Initial case study. Ann. Geophys., 24, 31973214, doi:10.5194/angeo-24-3197-2006.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., P. Reasor, and S. Lorsolo, 2013: Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon. Wea. Rev., 141, 29702991, doi:10.1175/MWR-D-12-00357.1.

    • Search Google Scholar
    • Export Citation
  • Romps, D. M., J. T. Seeley, D. Vollaro, and J. Molinari, 2014: Projected increase in lightning strikes in the United States due to global warming. Science, 346, 851853, doi:10.1126/science.1259100.

    • Search Google Scholar
    • Export Citation
  • Rudlosky, S. D., and D. T. Shea, 2013: Evaluation WWLLN performance relative to TRMM/LIS. Geophys. Res. Lett., 40, 23442348, doi:10.1002/grl.50428.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., 1983: The asymmetric boundary layer flower under a translating hurricane. J. Atmos. Sci., 40, 19841998, doi:10.1175/1520-0469(1983)040<1984:TABLFU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394, doi:10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stevenson, S. N., K. L. Corbosiero, and J. Molinari, 2014: The convective evolution and rapid intensification of Hurricane Earl (2010). Mon. Wea. Rev., 142, 43644380, doi:10.1175/MWR-D-14-00078.1.

    • Search Google Scholar
    • Export Citation
  • Thomas, J. N., N. N. Solorzano, S. A. Cummer, and R. H. Holzworth, 2010: Polarity and energetics of inner core lightning in three intense North Atlantic hurricanes. J. Geophys. Res., 115, A00E15, doi:10.1029/2009JA014777.

    • Search Google Scholar
    • Export Citation
  • Thomsen, G. L., R. K. Smith, and M. T. Montgomery, 2015: Tropical cyclone flow asymmetries induced by a uniform flow revisited. J. Adv. Model. Earth Syst., 7, 1265–1284, doi:10.1002/2015MS000477.

  • Trenberth, K., 2005: Uncertainty in hurricanes and global warming. Science, 308, 17531754, doi:10.1126/science.1112551.

  • Vigh, J. L., and W. H. Schubert, 2009: Rapid development of the tropical cyclone warm core. J. Atmos. Sci., 66, 33353350, doi:10.1175/2009JAS3092.1.

    • Search Google Scholar
    • Export Citation
  • Virts, K. S., J. M. Wallace, M. L. Hutchins, and R. Holzworth, 2013: Highlights of a new ground-based, hourly global lightning climatology. Bull. Amer. Meteor. Soc., 94, 13811391, doi:10.1175/BAMS-D-12-00082.1.

    • Search Google Scholar
    • Export Citation
  • Virts, K. S., J. M. Wallace, M. L. Hutchins, and R. H. Holzworth, 2015: Diurnal and seasonal lightning variability over the Gulf Stream and Gulf of Mexico. J. Atmos. Sci., 72, 26572665, doi:10.1175/JAS-D-14-0233.1.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and N. E. Graham, 1993: Convective cloud systems and warm-pool sea surface temperatures: Coupled interactions and self-regulation. J. Geophys. Res., 98, 12 88112 893, doi:10.1029/93JD00872.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 12501273, doi:10.1175/2008JAS2737.1.

    • Search Google Scholar
    • Export Citation
  • Watt, A. D., 1967: VLF Radio Engineering. Pergamon Press, 703 pp.

  • Willoughby, H. E., 1990: Temporal changes of the primary circulation in tropical cyclones. J. Atmos. Sci., 47, 242264, doi:10.1175/1520-0469(1990)047<0242:TCOTPC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., Y. Zhang, D. Zheng, F. Wang, and L. Xu, 2015: Relationship between lightning activity and tropical cyclone intensity over the northwest Pacific. J. Geophys. Res. Atmos., 120, 40724089, doi:10.1002/2014JD022334.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 757 192 15
PDF Downloads 348 113 9