Ensemble Sensitivity Analysis for Mesoscale Forecasts of Dryline Convection Initiation

Aaron J. Hill Atmospheric Science Group, Department of Geosciences, Texas Tech University, Lubbock, Texas

Search for other papers by Aaron J. Hill in
Current site
Google Scholar
PubMed
Close
,
Christopher C. Weiss Atmospheric Science Group, Department of Geosciences, Texas Tech University, Lubbock, Texas

Search for other papers by Christopher C. Weiss in
Current site
Google Scholar
PubMed
Close
, and
Brian C. Ancell Atmospheric Science Group, Department of Geosciences, Texas Tech University, Lubbock, Texas

Search for other papers by Brian C. Ancell in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Two cases of dryline convection initiation (CI) over north Texas have been simulated (3 April 2012 and 15 May 2013) from a 50-member WRF-DART ensemble adjustment Kalman filter (EAKF) ensemble. In this study, ensemble sensitivity analysis (ESA) is applied to a convective forecast metric, maximum composite reflectivity (referred to as the response function), as a simple proxy for CI to analyze dynamic mesoscale sensitivities at the surface and aloft. Analysis reveals positional and magnitude sensitivities related to the strength and placement of important dynamic features. Convection initiation is sensitive to the evolving temperature and dewpoint fields upstream of the forecast response region in the near-CI time frame (0–12 h), prior to initiation. The sensitivity to thermodynamics is also manifest in the magnitude of dewpoint gradients along the dryline that triggers the convection. ESA additionally highlights the importance of antecedent precipitation and cold pool generation that modifies the pre-CI environment. Aloft, sensitivity of CI to a weak short-wave trough and capping inversion-level temperature is coherent, consistent, and traceable through the entire forecast period. Notwithstanding the (often) non-Gaussian distribution of ensemble member forecasts of convection, which violate the underpinnings of ESA theory, ESA is demonstrated to sufficiently identify regions that influence dryline CI. These results indicate an application of ESA for severe storm forecasting at operational centers and forecast offices as well as other mesoscale forecasting applications.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/MWR-D-15-0338.s1.

Corresponding author address: Aaron J. Hill, Department of Geosciences, Texas Tech University, Box 41053, Lubbock, TX 79409. E-mail: aaron.hill@ttu.edu

Abstract

Two cases of dryline convection initiation (CI) over north Texas have been simulated (3 April 2012 and 15 May 2013) from a 50-member WRF-DART ensemble adjustment Kalman filter (EAKF) ensemble. In this study, ensemble sensitivity analysis (ESA) is applied to a convective forecast metric, maximum composite reflectivity (referred to as the response function), as a simple proxy for CI to analyze dynamic mesoscale sensitivities at the surface and aloft. Analysis reveals positional and magnitude sensitivities related to the strength and placement of important dynamic features. Convection initiation is sensitive to the evolving temperature and dewpoint fields upstream of the forecast response region in the near-CI time frame (0–12 h), prior to initiation. The sensitivity to thermodynamics is also manifest in the magnitude of dewpoint gradients along the dryline that triggers the convection. ESA additionally highlights the importance of antecedent precipitation and cold pool generation that modifies the pre-CI environment. Aloft, sensitivity of CI to a weak short-wave trough and capping inversion-level temperature is coherent, consistent, and traceable through the entire forecast period. Notwithstanding the (often) non-Gaussian distribution of ensemble member forecasts of convection, which violate the underpinnings of ESA theory, ESA is demonstrated to sufficiently identify regions that influence dryline CI. These results indicate an application of ESA for severe storm forecasting at operational centers and forecast offices as well as other mesoscale forecasting applications.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/MWR-D-15-0338.s1.

Corresponding author address: Aaron J. Hill, Department of Geosciences, Texas Tech University, Box 41053, Lubbock, TX 79409. E-mail: aaron.hill@ttu.edu
Save
  • Ancell, B. C., 2013: Nonlinear characteristics of ensemble perturbation evolution and their application to forecasting high-impact events. Wea. Forecasting, 28, 13531365, doi:10.1175/WAF-D-12-00090.1.

    • Search Google Scholar
    • Export Citation
  • Ancell, B. C., and G. J. Hakim, 2007: Comparing adjoint- and ensemble-sensitivity analysis with applications to observation targeting. Mon. Wea. Rev., 135, 41174134, doi:10.1175/2007MWR1904.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903, doi:10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2007: An adaptive covariance inflation error correction algorithm for ensemble filters. Tellus, 59A, 210224, doi:10.1111/j.1600-0870.2006.00216.x.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2009: Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus, 61A, 7283, doi:10.1111/j.1600-0870.2008.00361.x.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Avellano, 2009: The Data Assimilation Research Testbed: A community facility. Bull. Amer. Meteor. Soc., 90, 12831296, doi:10.1175/2009BAMS2618.1.

    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., R. M. Wakimoto, and C. L. Ziegler, 1998: Observations of the finescale structure of a dryline during VORTEX 95. Mon. Wea. Rev., 126, 525550, doi:10.1175/1520-0493(1998)126<0525:OOTFSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barker, D. M., W. Huang, Y.-R. Guo, J. Bourgeois, and Q. N. Xiao, 2004: A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev., 132, 897914, doi:10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bednarczyk, C. N., and B. C. Ancell, 2015: Ensemble sensitivity analysis applied to a southern plains convective event. Mon. Wea. Rev., 143, 230249, doi:10.1175/MWR-D-13-00321.1.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., 2005: Spurious convective organization in simulated squall lines owing to moist absolutely unstable layers. Mon. Wea. Rev., 133, 19781997, doi:10.1175/MWR2952.1.

    • Search Google Scholar
    • Export Citation
  • Carlson, T., and F. Ludlam, 1968: Conditions for the occurrence of severe local storms. Tellus, 20A, 203226, doi:10.1111/j.2153-3490.1968.tb00364.x.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., M. Zheng, and K. Raeder, 2013: Medium-range ensemble sensitivity analysis of two extreme Pacific extratropical cyclones. Mon. Wea. Rev., 141, 211231, doi:10.1175/MWR-D-11-00304.1.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., W. A. Gallus, M. Xue, and F. Kong, 2009: A comparison of precipitation forecast skill between small convection-allowing and large convection-parameterizing ensembles. Wea. Forecasting, 24, 11211140, doi:10.1175/2009WAF2222222.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., M. C. Coniglio, B. E. Coffer, G. Thompson, M. Xue, and F. Kong, 2015: Sensitivity of 24-h forecast dryline position and structure to boundary layer parameterizations in convection-allowing WRF Model simulations. Wea. Forecasting, 30, 613638, doi:10.1175/WAF-D-14-00078.1.

    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., L. C. Maudlin, P. G. Veals, and A. J. Clark, 2013: Dryline position errors in experimental convection-allowing NSSL-WRF model forecasts and the operational NAM. Wea. Forecasting, 28, 746761, doi:10.1175/WAF-D-12-00092.1.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., and L. F. Bosart, 2001: Extratropical synoptic-scale processes and severe convection. Severe Convective Storms, Meteor. Monogr., No. 50, 27–70, doi:10.1175/0065-9401-28.50.27.

  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Errico, R. M., 1997: What is an adjoint model? Bull. Amer. Meteor. Soc., 78, 25772591, doi:10.1175/1520-0477(1997)078<2577:WIAAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Errico, R. M., and T. Vukićević, 1992: Sensitivity analysis using an adjoint of the PSU–NCAR mesoscale model. Mon. Wea. Rev., 120, 16441660, doi:10.1175/1520-0493(1992)120<1644:SAUAAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Errico, R. M., K. D. Raeder, and L. Fillion, 2003: Examination of the sensitivity of forecast precipitation rates to possible perturbations of initial conditions. Tellus, 55A, 88105, doi:10.1034/j.1600-0870.2003.201394.x.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162, doi:10.1029/94JC00572.

    • Search Google Scholar
    • Export Citation
  • Garcies, L., and V. Homar, 2009: Ensemble sensitivities of the real atmosphere: Application to Mediterranean intense cyclones. Tellus, 61A, 394406, doi:10.1111/j.1600-0870.2009.00392.x.

    • Search Google Scholar
    • Export Citation
  • Garcies, L., and V. Homar, 2010: An optimized ensemble sensitivity climatology of Mediterranean intense cyclones. Nat. Hazards Earth Syst. Sci., 10, 24412450, doi:10.5194/nhess-10-2441-2010.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, doi:10.1002/qj.49712555417.

    • Search Google Scholar
    • Export Citation
  • Hacker, J., and L. Lei, 2015: Multivariate ensemble sensitivity with localization. Mon. Wea. Rev., 143, 20132027, doi:10.1175/MWR-D-14-00309.1.

    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., and R. D. Torn, 2008: Ensemble synoptic analysis. Synoptic-Dynamic Meteorology and Weather Analysis and Forecasting: A Tribute to Fred Sanders, Meteor. Monogr., No. 55, Amer. Meteor. Soc., 147–162, doi:10.1175/0065-9401-33.55.147.

  • Hamill, T., and C. Snyder, 2002: Using improved background-error covariances from an ensemble Kalman filter for adaptive observations. Mon. Wea. Rev., 130, 15521572, doi:10.1175/1520-0493(2002)130<1552:UIBECF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hamill, T., J. S. Whitaker, and C. Snyder, 2001: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev., 129, 27762790, doi:10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holt, T. R., D. Niyogi, F. Chen, K. Manning, M. A. LeMone, and A. Qureshi, 2006: Effect of land–atmosphere interactions on the IHOP 24–25 May 2002 convection case. Mon. Wea. Rev., 134, 113133, doi:10.1175/MWR3057.1.

    • Search Google Scholar
    • Export Citation
  • Hong, S., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182342, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P., and H. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796811, doi:10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ito, K., and C.-C. Wu, 2013: Typhoon-position-oriented sensitivity analysis. Part I: Theory and verification. J. Atmos. Sci., 70, 25252546, doi:10.1175/JAS-D-12-0301.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kain, J., and Coauthors, 2013: A feasibility study for probabilistic convection initiation forecasts based on explicit numerical guidance. Bull. Amer. Meteor. Soc., 94, 12131225, doi:10.1175/BAMS-D-11-00264.1.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., Y. Ota, T. Miyoshi, and J. Liu, 2012: A simpler formulation of forecast sensitivity to observations: Application to ensemble Kalman filters. Tellus, 64A, 19, doi:10.3402/tellusa.v64i0.18462.

    • Search Google Scholar
    • Export Citation
  • Kang, W., and L. Xu, 2012: Optimal placement of mobile sensors for data assimilations. Tellus, 64A, 112, doi:10.3402/tellusa.v64i0.17133.

    • Search Google Scholar
    • Export Citation
  • LeDimet, F., and O. Talagrand, 1986: Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus, 38A, 97110, doi:10.1111/j.1600-0870.1986.tb00459.x.

    • Search Google Scholar
    • Export Citation
  • Liu, J., and E. Kalnay, 2008: Estimating observation impact without adjoint model in an ensemble Kalman filter. Quart. J. Roy. Meteor. Soc., 134, 13271335, doi:10.1002/qj.280.

    • Search Google Scholar
    • Export Citation
  • Martin, W., and M. Xue, 2006: Sensitivity analysis of convection of the 24 May 2002 IHOP case using very large ensembles. Mon. Wea. Rev., 134, 192207, doi:10.1175/MWR3061.1.

    • Search Google Scholar
    • Export Citation
  • McMurdie, L. A., and B. Ancell, 2014: Predictability characteristics of land-falling cyclones along the North American west coast. Mon. Wea. Rev., 142, 301319, doi:10.1175/MWR-D-13-00141.1.

    • Search Google Scholar
    • Export Citation
  • Melhauser, C., and F. Zhang, 2012: Practical and intrinsic predictability of severe and convective weather at the mesoscales. J. Atmos. Sci., 69, 33503371, doi:10.1175/JAS-D-11-0315.1.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Qin, X., and M. Mu, 2011: A study on the reduction of forecast error variance by three adaptive observation approaches for tropical cyclone prediction. Mon. Wea. Rev., 139, 22182232, doi:10.1175/2010MWR3327.1.

    • Search Google Scholar
    • Export Citation
  • Rabier, F., E. Klinker, P. Courtier, and A. Hollingsworth, 1996: Sensitivity of forecast errors to initial conditions. Quart. J. Roy. Meteor. Soc., 122, 121150, doi:10.1002/qj.49712252906.

    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., 1986: The dryline. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 549–572.

  • Schumacher, R. S., 2015: Resolution dependence of initiation and upscale growth of deep convection in convection-allowing forecasts of the 31 May–1 June 2013 supercell and MCS. Mon. Wea. Rev., 143, 43314354, doi:10.1175/MWR-D-15-0179.1.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., G. S. Romine, K. R. Smith, and M. L. Weisman, 2014: Characterizing and optimizing precipitation forecasts from a convection-permitting ensemble initialized by a mesoscale ensemble Kalman filter. Wea. Forecasting, 29, 12951318, doi:10.1175/WAF-D-13-00145.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519543, doi:10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., 2010: Ensemble-based sensitivity analysis applied to African easterly waves. Wea. Forecasting, 25, 6178, doi:10.1175/2009WAF2222255.1.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., 2014: The impact of targeted dropwindsonde observations on tropical cyclone intensity forecasts of four weak systems during PREDICT. Mon. Wea. Rev., 142, 28602878, doi:10.1175/MWR-D-13-00284.1.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and G. J. Hakim, 2008: Ensemble-based sensitivity analysis. Mon. Wea. Rev., 136, 663677, doi:10.1175/2007MWR2132.1.

  • Torn, R. D., and G. J. Hakim, 2009: Initial condition sensitivity of western Pacific extratropical transitions determined using ensemble-based sensitivity analysis. Mon. Wea. Rev., 137, 33883406, doi:10.1175/2009MWR2879.1.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and D. Cook, 2013: The role of vortex and environment errors in genesis forecasts of Hurricanes Danielle and Karl (2010). Mon. Wea. Rev., 141, 232251, doi:10.1175/MWR-D-12-00086.1.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and G. S. Romine, 2015: Sensitivity of central Oklahoma convection forecasts to upstream potential vorticity anomalies during two strongly forced cases during MPEX. Mon. Wea. Rev., 143, 40644087, doi:10.1175/MWR-D-15-0085.1.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., G. J. Hakim, and C. Snyder, 2006: Boundary conditions for limited-area ensemble Kalman filters. Mon. Wea. Rev., 134, 24902502, doi:10.1175/MWR3187.1.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and Coauthors, 2015: The Mesoscale Predictability Experiment (MPEX). Bull. Amer. Meteor. Soc., 96, 21272149, doi:10.1175/BAMS-D-13-00281.1.

    • Search Google Scholar
    • Export Citation
  • Weiss, C., and H. Bluestein, 2002: Airborne pseudo–dual Doppler analysis of a dryline–outflow boundary intersection. Mon. Wea. Rev., 130, 12071226, doi:10.1175/1520-0493(2002)130<1207:APDDAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weiss, C., H. Bluestein, and A. Pazmany, 2006: Finescale radar observations of the 22 May 2002 dryline during the International H2O Project (IHOP). Mon. Wea. Rev., 134, 273293, doi:10.1175/MWR3068.1.

    • Search Google Scholar
    • Export Citation
  • Wile, S. M., J. P. Hacker, and K. H. Chilcoat, 2015: The potential utility of high-resolution ensemble sensitivity analysis for observation placement during weak flow in complex terrain. Wea. Forecasting, 30, 15211536, doi:10.1175/WAF-D-14-00066.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. Academic Press, 676 pp.

  • Xie, B., F. Zhang, Q. Zhang, J. Poterjoy, and Y. Weng, 2013: Observing strategy and observation targeting for tropical cyclones using ensemble-based sensitivity analysis and data assimilation. Mon. Wea. Rev., 141, 14371453, doi:10.1175/MWR-D-12-00188.1.

    • Search Google Scholar
    • Export Citation
  • Zack, J., E. Natenberg, S. Young, G. V. Knowe, K. Waight, J. Manobianco, and C. Kamath, 2010a: Application of ensemble sensitivity analysis to observation targeting for short-term wind speed forecasting in the Washington–Oregon region. Lawrence Livermore National Laboratory Tech. Rep. LLNL-TR-458086, Livermore, CA, 65 pp.

  • Zack, J., E. Natenberg, S. Young, G. Van Knowe, K. Waight, J. Manobainco, and C. Kamath, 2010b: Application of ensemble sensitivity analysis to observation targeting for short-term wind speed forecasting in the Tehachapi region winter season. Lawrence Livermore National Laboratory Tech. Rep. LLNL-TR-460956, Livermore, CA, 57 pp.

  • Zack, J., E. Natenberg, S. Young, J. Manobianco, and C. Kamath, 2010c: Application of ensemble sensitivity analysis to observation targeting for short-term wind speed forecasting. Lawrence Livermore National Laboratory Tech. Rep. LLNL-TR-424442, Livermore, CA, 32 pp.

  • Zack, J., E. J. Natenberg, G. V. Knowe, K. Waight, J. Manobianco, D. Hanley, and C. Kamath, 2011a: Observing system simulation experiments (OSSEs) for the Mid-Columbia basin. Lawrence Livermore National Laboratory Tech. Rep. LLNL-TR-499162, Livermore, CA, 17 pp.

  • Zack, J., E. Natenberg, G. Knowe, J. Manobianco, K. Waight, D. Hanley, and C. Kamath, 2011b: Use of data denial experiments to evaluate ESA forecast sensitivity patterns. Lawrence Livermore National Laboratory Tech. Rep. LLNL-TR-499166, Livermore, CA, 33 pp.

  • Zhang, F., C. Snyder, and R. Rotunno, 2003: Effects of moist convection on mesoscale predictability. J. Atmos. Sci., 60, 11731185, doi:10.1175/1520-0469(2003)060<1173:EOMCOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., and E. N. Rasmussen, 1998: The initiation of moist convection at the dryline: Forecasting issues from a case study perspective. Wea. Forecasting, 13, 11061131, doi:10.1175/1520-0434(1998)013<1106:TIOMCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 845 390 47
PDF Downloads 596 138 12