Regionalizing Rainfall at Very High Resolution over La Réunion Island: A Case Study for Tropical Cyclone Ando

Benjamin Pohl CRC/Biogéosciences, UMR6282, CNRS/Université de Bourgogne Franche-Comté, Dijon, France

Search for other papers by Benjamin Pohl in
Current site
Google Scholar
PubMed
Close
,
Béatrice Morel LE2P, Université de La Réunion, St-Denis, La Réunion, France

Search for other papers by Béatrice Morel in
Current site
Google Scholar
PubMed
Close
,
Christelle Barthe Laboratoire de l'Atmosphère et des Cyclones, UMR8105, CNRS/Université de La Réunion/Météo-France, St-Denis, La Réunion, France

Search for other papers by Christelle Barthe in
Current site
Google Scholar
PubMed
Close
, and
Olivier Bousquet Laboratoire de l'Atmosphère et des Cyclones, UMR8105, CNRS/Université de La Réunion/Météo-France, St-Denis, La Réunion, France

Search for other papers by Olivier Bousquet in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Ensemble simulations of Tropical Cyclone (TC) Ando (31 December 2000–9 January 2001) are performed over the southwest Indian Ocean using the nonhydrostatic WRF Model. Nested domains centered over the island of La Réunion allow for the simulation of local rainfall amounts associated with TC Ando at very high resolution (680-m grid spacing). The model is forced by and nudged toward ERA-Interim during the first (1–6) day(s) of the TC’s life cycle. The nudging ends at various dates to constrain either the whole life cycle or only parts of it.

As expected, results show weakened member dispersion, as the relaxation lasts longer, with more members producing similar cyclone tracks and intensities. The model shows reasonable skill to simulate local rainfall amounts and distribution, as soon as the simulated TC approaches La Réunion with a realistic distance and azimuth. Strong lower-level wind associated with the TC is forced to ascend over the slopes of the island. The model is able to successfully simulate the extreme daily precipitation amounts (>1200 mm) and their distribution over the highest parts of La Réunion. Nevertheless, smaller-scale features of the rainfall field are less realistic in the simulations. The wind speed and direction upstream of the island are the main drivers of such local uncertainties and errors, and they appear as an important issue to assess the local impacts of the TC over such a complex terrain.

Corresponding author address: Dr. Benjamin Pohl, Centre de Recherche de Climatologie, UMR6282 Biogéosciences, CNRS/Université de Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France. E-mail: benjamin.pohl@u-bourgogne.fr

Abstract

Ensemble simulations of Tropical Cyclone (TC) Ando (31 December 2000–9 January 2001) are performed over the southwest Indian Ocean using the nonhydrostatic WRF Model. Nested domains centered over the island of La Réunion allow for the simulation of local rainfall amounts associated with TC Ando at very high resolution (680-m grid spacing). The model is forced by and nudged toward ERA-Interim during the first (1–6) day(s) of the TC’s life cycle. The nudging ends at various dates to constrain either the whole life cycle or only parts of it.

As expected, results show weakened member dispersion, as the relaxation lasts longer, with more members producing similar cyclone tracks and intensities. The model shows reasonable skill to simulate local rainfall amounts and distribution, as soon as the simulated TC approaches La Réunion with a realistic distance and azimuth. Strong lower-level wind associated with the TC is forced to ascend over the slopes of the island. The model is able to successfully simulate the extreme daily precipitation amounts (>1200 mm) and their distribution over the highest parts of La Réunion. Nevertheless, smaller-scale features of the rainfall field are less realistic in the simulations. The wind speed and direction upstream of the island are the main drivers of such local uncertainties and errors, and they appear as an important issue to assess the local impacts of the TC over such a complex terrain.

Corresponding author address: Dr. Benjamin Pohl, Centre de Recherche de Climatologie, UMR6282 Biogéosciences, CNRS/Université de Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France. E-mail: benjamin.pohl@u-bourgogne.fr
Save
  • Alexandru, A., R. De Elia, and R. Laprise, 2007: Internal variability in regional climate downscaling at the seasonal scale. Mon. Wea. Rev., 135, 32213238, doi:10.1175/MWR3456.1.

    • Search Google Scholar
    • Export Citation
  • Barcelo, A., and J. Coudray, 1996: Nouvelle carte des isohyètes annuelles et des maxima pluviométriques sur le massif du Piton de la Fournaise (Île de la Réunion). Rev. Sci. Eau, 9, 457484, doi:10.7202/705262ar.

    • Search Google Scholar
    • Export Citation
  • Barcelo, A., R. Robert, and J. Coudray, 1997: A major rainfall event: The 27 February–5 March 1993 rains on the southeastern slope of Piton de la Fournaise Massif (Reunion Island, southwest Indian Ocean). Mon. Wea. Rev., 125, 33413346, doi:10.1175/1520-0493(1997)125<3341:AMRETF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cangialosi, J. P., and J. L. Franklin, 2012: 2011 National Hurricane Center forecast verification report. NOAA, 76 pp.

  • Chen, F., and J. Dudhia, 2001a: Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001b: Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part II: Preliminary model validation. Mon. Wea. Rev., 129, 587604, doi:10.1175/1520-0493(2001)129<0587:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Crétat, J., C. Macron, B. Pohl, and Y. Richard, 2011: Quantifying internal variability in a regional climate model: A case study for Southern Africa. Climate Dyn., 37, 13351356, doi:10.1007/s00382-011-1021-5.

    • Search Google Scholar
    • Export Citation
  • Daloz, A.-S., and Coauthors, 2015: Cluster analysis of downscaled and explicitly simulated North Atlantic tropical cyclone tracks. J. Climate, 28, 13331361, doi:10.1175/JCLI-D-13-00646.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., C. R. Sampson, J. A. Knaff, and K. D. Musgrave, 2014: Is tropical cyclone intensity guidance improving? Bull. Amer. Meteor. Soc., 95, 387398, doi:10.1175/BAMS-D-12-00240.1.

    • Search Google Scholar
    • Export Citation
  • Der Mégréditchian, G., 1991: Le Traitement Statistique des Données Multi-Dimensionnelles: Application à la Météorologie. Vol. 1, Cours et Manuels 8, Météo-France, 287 pp.

  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Falvey, R., 2012: Summary of the 2011 western Pacific/Indian Ocean tropical cyclone season. Proc. 66th Interdepartmental Hurricane Conf., Charleston, SC, OFCM. [Available online at http://www.ofcm.gov/ihc12/Presentations/01b-Session/05-JTWC_2012_IHC_Final.pdf.]

  • Giorgi, F., and X. Bi, 2000: A study of internal variability of a regional climate model. J. Geophys. Res., 105, 29 50329 521, doi:10.1029/2000JD900269.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., G. T. Bates, J. S. Whitaker, D. R. Murray, M. Fiorino, T. J. Galarneau Jr., Y. Zhu, and W. Lapenta, 2013: NOAA’s second-generation global medium-range ensemble reforecast data set. Bull. Amer. Meteor. Soc., 94, 15531565, doi:10.1175/BAMS-D-12-00014.1.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS). Bull. Amer. Meteor. Soc., 91, 363376, doi:10.1175/2009BAMS2755.1.

    • Search Google Scholar
    • Export Citation
  • Kyriakidis, P. C., J. Kim, and N. L. Miller, 2001: Geostatistical mapping of precipitation from rain gauge data using atmospheric and terrain characteristics. J. Appl. Meteor., 40, 18551877, doi:10.1175/1520-0450(2001)040<1855:GMOPFR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, B., and L. Xie, 2012: A scale-selective data assimilation approach to improving tropical cyclone track and intensity forecasts in a limited-area model: A case study of hurricane Felix (2007). Wea. Forecasting, 27, 124140, doi:10.1175/WAF-D-10-05033.1.

    • Search Google Scholar
    • Export Citation
  • Ma, L.-M., and Z.-M. Tan, 2009: Improving the behavior of the cumulus parameterization for tropical cyclone prediction: Convection trigger. Atmos. Res., 92, 190211, doi:10.1016/j.atmosres.2008.09.022.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, and M. J. Iacono, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Mohapatra, M., B. K. Bandyopadhyay, and D. P. Nayak, 2013: Evaluation of operational tropical cyclone intensity forecasts over north Indian Ocean issued by India Meteorological Department. Nat. Hazards, 68, 433451, doi:10.1007/s11069-013-0624-z.

    • Search Google Scholar
    • Export Citation
  • Morel, B., B. Pohl, Y. Richard, B. Bois, and M. Bessafi, 2014: Regionalizing rainfall at very high resolution over La Réunion island using a regional climate model. Mon. Wea. Rev., 142, 26652686, doi:10.1175/MWR-D-14-00009.1.

    • Search Google Scholar
    • Export Citation
  • Pohl, B., and J. Crétat, 2014: On the use of nudging techniques for regional climate modeling: Application for tropical convection. Climate Dyn., 43, 16931714, doi:10.1007/s00382-013-1994-3.

    • Search Google Scholar
    • Export Citation
  • Separovic, L., R. de Elía, and R. Laprise, 2008: Reproducible and irreproducible components in ensemble simulations with a regional climate model. Mon. Wea. Rev., 136, 49424961, doi:10.1175/2008MWR2393.1.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., S. M. Uppala, D. P. Dee, and S. Kobayashi, 2007: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35.

  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, doi:10.1016/j.jcp.2007.01.037.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Walsh, K., 1997: Objective detection of tropical cyclones in high-resolution analyses. Mon. Wea. Rev., 125, 17671779, doi:10.1175/1520-0493(1997)125<1767:ODOTCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, C.-C., 2015: The more rain, the better the model performs—The dependency of quantitative precipitation forecast skill on rainfall amount for typhoons in Taiwan. Mon. Wea. Rev., 143, 17231748, doi:10.1175/MWR-D-14-00137.1.

    • Search Google Scholar
    • Export Citation
  • Wang, C.-C., S.-Y. Huang, S.-H. Chen, C.-S. Chang, and K. Tsuboki, 2016: Cloud-resolving typhoon rainfall ensemble forecasts for Taiwan with large domain and extended range through time-lagged approach. Wea. Forecasting, 31, 151172, doi:10.1175/WAF-D-15-0045.1.

    • Search Google Scholar
    • Export Citation
  • WMO, 2011: Seventh International Workshop on Tropical Cyclones (IWTC-VII). WMO Final Rep. WWRP 2011-1, WMO/TD-1561, 79 pp. [Available online at https://www.wmo.int/pages/prog/arep/wwrp/new/documents/final_WWRP_2011_1_TD_No_1561.pdf.]

  • WMO, 2014: Recommendations. Eighth Int. Workshop on Tropical Cyclones (IWTC-VIII), Jeju, South Korea, WWRP and TCP, 4 pp. [Available online at http://www.wmo.int/pages/prog/arep/wwrp/tmr/documents/ListofRecommendations.pdf.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1418 990 376
PDF Downloads 253 70 3