Model Error in Filtering Random Compressible Flows Utilizing Noisy Lagrangian Tracers

Nan Chen Department of Mathematics and Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, New York, New York

Search for other papers by Nan Chen in
Current site
Google Scholar
PubMed
Close
and
Andrew J. Majda Department of Mathematics and Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, New York, New York, and Center for Prototype Climate Modeling, NYU Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates

Search for other papers by Andrew J. Majda in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Lagrangian tracers are drifters and floaters that collect real-time information of fluid flows. This paper studies the model error in filtering multiscale random rotating compressible flow fields utilizing noisy Lagrangian tracers. The random flow fields are defined through random amplitudes of Fourier eigenmodes of the rotating shallow-water equations that contain both incompressible geostrophically balanced (GB) flows and rotating compressible gravity waves, where filtering the slow-varying GB flows is of primary concern. Despite the inherent nonlinearity in the observations with mixed GB and gravity modes, there are closed analytical formulas for filtering the underlying flows. Besides the full optimal filter, two practical imperfect filters are proposed. An information-theoretic framework is developed for assessing the model error in the imperfect filters, which can apply to a single realization of the observations. All the filters are comparably skillful in a fast rotation regime (Rossby number ). In a moderate rotation regime (), significant model errors are found in the reduced filter containing only GB forecast model, while the computationally efficient 3D-Var filter with a diagonal covariance matrix remains skillful. First linear then nonlinear coupling of GB and gravity modes is introduced in the random Fourier amplitudes, while linear forecast models are retained to ensure the filter estimates have closed analytical expressions. All the filters remain skillful in the regime. In the regime, the full filter with a linear forecast model has an acceptable filtering skill, while large model errors are shown in the other two imperfect filters.

Denotes Open Access content.

Corresponding author address: Nan Chen, Department of Mathematics and Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012. E-mail: chennan@cims.nyu.edu

Abstract

Lagrangian tracers are drifters and floaters that collect real-time information of fluid flows. This paper studies the model error in filtering multiscale random rotating compressible flow fields utilizing noisy Lagrangian tracers. The random flow fields are defined through random amplitudes of Fourier eigenmodes of the rotating shallow-water equations that contain both incompressible geostrophically balanced (GB) flows and rotating compressible gravity waves, where filtering the slow-varying GB flows is of primary concern. Despite the inherent nonlinearity in the observations with mixed GB and gravity modes, there are closed analytical formulas for filtering the underlying flows. Besides the full optimal filter, two practical imperfect filters are proposed. An information-theoretic framework is developed for assessing the model error in the imperfect filters, which can apply to a single realization of the observations. All the filters are comparably skillful in a fast rotation regime (Rossby number ). In a moderate rotation regime (), significant model errors are found in the reduced filter containing only GB forecast model, while the computationally efficient 3D-Var filter with a diagonal covariance matrix remains skillful. First linear then nonlinear coupling of GB and gravity modes is introduced in the random Fourier amplitudes, while linear forecast models are retained to ensure the filter estimates have closed analytical expressions. All the filters remain skillful in the regime. In the regime, the full filter with a linear forecast model has an acceptable filtering skill, while large model errors are shown in the other two imperfect filters.

Denotes Open Access content.

Corresponding author address: Nan Chen, Department of Mathematics and Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012. E-mail: chennan@cims.nyu.edu
Save
  • Apte, A., C. K. Jones, and A. Stuart, 2008: A Bayesian approach to Lagrangian data assimilation. Tellus, 60A, 336–347, doi:10.1111/j.1600-0870.2007.00295.x.

    • Search Google Scholar
    • Export Citation
  • Beran, R., 1977: Minimum Hellinger distance estimates for parametric models. Ann. Stat., 5, 445–463, doi:10.1214/aos/1176343842.

  • Branicki, M., and A. Majda, 2014: Quantifying Bayesian filter performance for turbulent dynamical systems through information theory. Commun. Math. Sci., 12, 901–978, doi:10.4310/CMS.2014.v12.n5.a6.

    • Search Google Scholar
    • Export Citation
  • Branicki, M., N. Chen, and A. J. Majda, 2013: Non-Gaussian test models for prediction and state estimation with model errors. Chin. Ann. Math. Ser. B, 34, 29–64, doi:10.1007/s11401-012-0759-3.

    • Search Google Scholar
    • Export Citation
  • Chen, N., and A. J. Majda, 2015a: Predicting the cloud patterns for the boreal summer intraseasonal oscillation through a low-order stochastic model. Math. Climate Wea. Forecasting, 1, 1–20, doi:10.1515/mcwf-2015-0001.

    • Search Google Scholar
    • Export Citation
  • Chen, N., and A. J. Majda, 2015b: Predicting the real-time multivariate Madden–Julian oscillation index through a low-order nonlinear stochastic model. Mon. Wea. Rev., 143, 2148–2169, doi:10.1175/MWR-D-14-00378.1.

    • Search Google Scholar
    • Export Citation
  • Chen, N., and A. J. Majda, 2016: Filtering nonlinear turbulent dynamical systems through conditional Gaussian statistics. Mon. Wea. Rev., doi:10.1175/MWR-D-15-0437.1, in press.

    • Search Google Scholar
    • Export Citation
  • Chen, N., A. J. Majda, and D. Giannakis, 2014a: Predicting the cloud patterns of the Madden-Julian oscillation through a low-order nonlinear stochastic model. Geophys. Res. Lett., 41, 5612–5619, doi:10.1002/2014GL060876.

    • Search Google Scholar
    • Export Citation
  • Chen, N., A. J. Majda, and X. T. Tong, 2014b: Information barriers for noisy Lagrangian tracers in filtering random incompressible flows. Nonlinearity, 27, 2133–2163, doi:10.1088/0951-7715/27/9/2133.

    • Search Google Scholar
    • Export Citation
  • Chen, N., A. J. Majda, and X. T. Tong, 2015: Noisy Lagrangian tracers for filtering random rotating compressible flows. J. Nonlinear Sci., 25, 451–488, doi:10.1007/s00332-014-9226-5.

    • Search Google Scholar
    • Export Citation
  • Cushman-Roisin, B., and J.-M. Beckers, 2011: Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects. Vol. 101. Academic Press, 875 pp.

  • Embid, P. F., and A. J. Majda, 1998: Low Froude number limiting dynamics for stably stratified flow with small or finite Rossby numbers. Geophys. Astrophys. Fluid Dyn., 87, 1–50, doi:10.1080/03091929808208993.

    • Search Google Scholar
    • Export Citation
  • Gershgorin, B., and A. Majda, 2008: A nonlinear test model for filtering slow-fast systems. Commun. Math. Sci., 6, 611–649, doi:10.4310/CMS.2008.v6.n3.a5.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere-Ocean Dynamics. Vol. 30. Academic Press, 662 pp.

  • Gould, J., and Coauthors, 2004: Argo profiling floats bring new era of in situ ocean observations. Eos, Trans. Amer. Geophys. Union, 85, 185–191, doi:10.1029/2004EO190002.

    • Search Google Scholar
    • Export Citation
  • Griffa, A., A. Kirwan Jr., A. J. Mariano, T. Özgökmen, and H. T. Rossby, Eds., 2007: Lagrangian Analysis and Prediction of Coastal and Ocean Dynamics. Cambridge University Press, 500 pp.

  • Harlim, J., and A. J. Majda, 2013: Test models for filtering and prediction of moisture-coupled tropical waves. Quart. J. Roy. Meteor. Soc., 139 (670), 119–136, doi:10.1002/qj.1956.

    • Search Google Scholar
    • Export Citation
  • Haykin, S., 2004: Kalman Filtering and Neural Networks. Vol. 47. John Wiley & Sons, 304 pp.

  • Kleeman, R., 2002: Measuring dynamical prediction utility using relative entropy. J. Atmos. Sci., 59, 2057–2072, doi:10.1175/1520-0469(2002)059<2057:MDPUUR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kuznetsov, L., K. Ide, and C. Jones, 2003: A method for assimilation of Lagrangian data. Mon. Wea. Rev., 131, 2247–2260, doi:10.1175/1520-0493(2003)131<2247:AMFAOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liptser, R. S., and A. N. Shiryaev, 2001: Statistics of Random Processes II: Applications. Vol. 2. Springer, 402 pp.

  • Majda, A. J., 2003: Introduction to PDEs and Waves for the Atmosphere and Ocean. Vol. 9. American Mathematical Society, 234 pp.

  • Majda, A. J., 2012: Challenges in climate science and contemporary applied mathematics. Commun. Pure Appl. Math., 65, 920–948, doi:10.1002/cpa.21401.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and P. Embid, 1998: Averaging over fast gravity waves for geophysical flows with unbalanced initial data. Theor. Comput. Fluid Dyn., 11, 155–169, doi:10.1007/s001620050086.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and X. Wang, 2006: Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows. Cambridge University Press, 564 pp.

  • Majda, A. J., and B. Gershgorin, 2010: Quantifying uncertainty in climate change science through empirical information theory. Proc. Natl. Acad. Sci. USA, 107, 14 958–14 963, doi:10.1073/pnas.1007009107.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and B. Gershgorin, 2011a: Improving model fidelity and sensitivity for complex systems through empirical information theory. Proc. Natl. Acad. Sci. USA, 108, 10 044–10 049, doi:10.1073/pnas.1105174108.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and B. Gershgorin, 2011b: Link between statistical equilibrium fidelity and forecasting skill for complex systems with model error. Proc. Natl. Acad. Sci. USA, 108, 12 599–12 604, doi:10.1073/pnas.1108132108.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and M. Branicki, 2012: Lessons in uncertainty quantification for turbulent dynamical systems. Discrete Cont. Dyn. Syst., 32, 3133–3221, doi:10.3934/dcds.2012.32.3133.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and J. Harlim, 2012: Filtering Complex Turbulent Systems. Cambridge University Press, 368 pp.

  • Majda, A. J., I. Timofeyev, and E. V. Eijnden, 1999: Models for stochastic climate prediction. Proc. Natl. Acad. Sci. USA, 96, 14 687–14 691, doi:10.1073/pnas.96.26.14687.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., R. Kleeman, and D. Cai, 2002: A mathematical framework for quantifying predictability through relative entropy. Methods Appl. Anal., 9, 425–444, doi:10.4310/MAA.2002.v9.n3.a8.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., I. Timofeyev, and E. Vanden-Eijnden, 2003: Systematic strategies for stochastic mode reduction in climate. J. Atmos. Sci., 60, 1705–1722, doi:10.1175/1520-0469(2003)060<1705:SSFSMR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Molcard, A., L. I. Piterbarg, A. Griffa, T. M. Özgökmen, and A. J. Mariano, 2003: Assimilation of drifter observations for the reconstruction of the Eulerian circulation field. J. Geophys. Res., 108, 3056, doi:10.1029/2001JC001240.

    • Search Google Scholar
    • Export Citation
  • Navon, I. M., 2009: Data assimilation for numerical weather prediction: A review. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, S. K. Park and L. Xu, Eds., Springer, 21–65.

  • Palmer, T. N., 2001: A nonlinear dynamical perspective on model error: A proposal for non-local stochastic-dynamic parametrization in weather and climate prediction models. Quart. J. Roy. Meteor. Soc., 127, 279–304, doi:10.1002/qj.49712757202.

    • Search Google Scholar
    • Export Citation
  • Rossby, C., 1937: On the mutual adjustment of pressure and velocity distributions in certain simple current systems. J. Mar. Res., 1 (1), 15–27.

    • Search Google Scholar
    • Export Citation
  • Salman, H., L. Kuznetsov, C. Jones, and K. Ide, 2006: A method for assimilating Lagrangian data into a shallow-water-equation ocean model. Mon. Wea. Rev., 134, 1081–1101, doi:10.1175/MWR3104.1.

    • Search Google Scholar
    • Export Citation
  • Salman, H., K. Ide, and C. K. Jones, 2008: Using flow geometry for drifter deployment in Lagrangian data assimilation. Tellus, 60A, 321–335, doi:10.1111/j.1600-0870.2007.00292.x.

    • Search Google Scholar
    • Export Citation
  • Slivinski, L., E. Spiller, A. Apte, and B. Sandstede, 2015: A hybrid particle–ensemble Kalman filter for Lagrangian data assimilation. Mon. Wea. Rev., 143, 195–211, doi:10.1175/MWR-D-14-00051.1.

    • Search Google Scholar
    • Export Citation
  • Smith, L. M., 2001: Numerical study of two-dimensional stratified turbulence. Contemp. Math., 283, 91–106, doi:10.1090/conm/283/04716.

    • Search Google Scholar
    • Export Citation
  • Smith, L. M., and F. Waleffe, 2002: Generation of slow large scales in forced rotating stratified turbulence. J. Fluid Mech., 451, 145–168, doi:10.1017/S0022112001006309.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge University Press, 769 pp.

  • Waite, M. L., and P. Bartello, 2004: Stratified turbulence dominated by vortical motion. J. Fluid Mech., 517, 281–308, doi:10.1017/S0022112004000977.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 318 98 16
PDF Downloads 210 62 4