Interaction of an Upper-Tropospheric Jet with a Squall Line Originating along a Cold Frontal Boundary

Daniel M. Stechman Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Daniel M. Stechman in
Current site
Google Scholar
PubMed
Close
,
Robert M. Rauber Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Robert M. Rauber in
Current site
Google Scholar
PubMed
Close
,
Greg M. McFarquhar Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Greg M. McFarquhar in
Current site
Google Scholar
PubMed
Close
,
Brian F. Jewett Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Brian F. Jewett in
Current site
Google Scholar
PubMed
Close
, and
David P. Jorgensen National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by David P. Jorgensen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

On 8 June 2003, an expansive squall line along a surface cold frontal boundary was sampled during the Bow Echo and Mesoscale Convective Vortex Experiment. The Naval Research Laboratory P-3 aircraft and the National Oceanic and Atmospheric Administration P-3 aircraft simultaneously sampled the leading and trailing edge of this squall line, respectively, with X-band Doppler radars. Data from these two airborne radar systems have been synthesized to produce a pseudo-quad-Doppler analysis of the squall line, yielding a detailed three-dimensional kinematic analysis of its structure. A simulation of the squall line was carried out using the Weather Research and Forecasting Model to complement the pseudo-quad-Doppler analysis. The simulation employed a 3-km, convection-allowing, nested domain centered over the pseudo-quad-Doppler domain, along with a 9-km parent domain to capture the larger synoptic-scale cyclone.

The pseudo-quad-Doppler analysis reveals that the convective line was embedded within the upper-tropospheric jet stream, causing local decelerations and deviations in the jet-level flow. The vertical transport of low momentum air from the boundary layer via convective updrafts is shown to significantly decelerate jet-level flow. Pressure perturbations associated with the intrusion of low momentum air into the jet stream–level flow led to deviation of the jet stream flow around the squall line that resulted in counter-rotating ribbons of vertical vorticity parallel to the squall line. Model results indicate that disturbances in the jet stream structure persisted downwind of the squall line for several hours.

Corresponding author address: Daniel M. Stechman, Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, 105 S. Gregory St., Urbana, IL 61801. E-mail: stechma2@illinois.edu

Abstract

On 8 June 2003, an expansive squall line along a surface cold frontal boundary was sampled during the Bow Echo and Mesoscale Convective Vortex Experiment. The Naval Research Laboratory P-3 aircraft and the National Oceanic and Atmospheric Administration P-3 aircraft simultaneously sampled the leading and trailing edge of this squall line, respectively, with X-band Doppler radars. Data from these two airborne radar systems have been synthesized to produce a pseudo-quad-Doppler analysis of the squall line, yielding a detailed three-dimensional kinematic analysis of its structure. A simulation of the squall line was carried out using the Weather Research and Forecasting Model to complement the pseudo-quad-Doppler analysis. The simulation employed a 3-km, convection-allowing, nested domain centered over the pseudo-quad-Doppler domain, along with a 9-km parent domain to capture the larger synoptic-scale cyclone.

The pseudo-quad-Doppler analysis reveals that the convective line was embedded within the upper-tropospheric jet stream, causing local decelerations and deviations in the jet-level flow. The vertical transport of low momentum air from the boundary layer via convective updrafts is shown to significantly decelerate jet-level flow. Pressure perturbations associated with the intrusion of low momentum air into the jet stream–level flow led to deviation of the jet stream flow around the squall line that resulted in counter-rotating ribbons of vertical vorticity parallel to the squall line. Model results indicate that disturbances in the jet stream structure persisted downwind of the squall line for several hours.

Corresponding author address: Daniel M. Stechman, Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, 105 S. Gregory St., Urbana, IL 61801. E-mail: stechma2@illinois.edu
Save
  • Atlas, D., R. C. Srivastava, and R. S. Sekhon, 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys. Space Phys., 11, 135, doi:10.1029/RG011i001p00001.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., 1995: The parametrization of surface fluxes in large-scale models under free convection. Quart. J. Roy. Meteor. Soc., 121, 255270, doi:10.1002/qj.49712152203.

    • Search Google Scholar
    • Export Citation
  • Bell, M. M., W.-C. Lee, C. A. Wolff, and H. Cai, 2013: A solo-based automated quality control algorithm for airborne tail Doppler radar data. J. Appl. Meteor. Climatol., 52, 25092528, doi:10.1175/JAMC-D-12-0283.1.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., G. A. Grell, J. M. Brown, T. G. Smirnova, and R. Bleck, 2004: Mesoscale weather prediction with the RUC hybrid isentropic–terrain-following coordinate model. Mon. Wea. Rev., 132, 473494, doi:10.1175/1520-0493(2004)132<0473:MWPWTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Biggerstaff, M. I., and R. A. Houze, 1991a: Kinematic and precipitation structure of the 10–11 June 1985 squall line. Mon. Wea. Rev., 119, 30343065, doi:10.1175/1520-0493(1991)119<3034:KAPSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Biggerstaff, M. I., and R. A. Houze, 1991b: Midlevel vorticity structure of the 10–11 June 1985 squall line. Mon. Wea. Rev., 119, 30663079, doi:10.1175/1520-0493(1991)119<3066:MVSOTJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and M. H. Jain, 1985: Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring. J. Atmos. Sci., 42, 17111732, doi:10.1175/1520-0469(1985)042<1711:FOMLOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davis, C., and Coauthors, 2004: The Bow Echo and MCV Experiment: Observations and opportunities. Bull. Amer. Meteor. Soc., 85, 10751093, doi:10.1175/BAMS-85-8-1075.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and R. A. Maddox, 1981: Convectively driven mesoscale weather systems aloft. Part II: Numerical simulations. J. Appl. Meteor., 20, 2026, doi:10.1175/1520-0450(1981)020<0020:CDMWSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gallus, W. A., and R. H. Johnson, 1992: The momentum budget of an intense midlatitude squall line. J. Atmos. Sci., 49, 422450, doi:10.1175/1520-0469(1992)049<0422:TMBOAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gao, K., D. Zhang, M. W. Moncrieff, and H. Cho, 1990: Mesoscale momentum budget in a midlatitude squall line: A numerical case study. Mon. Wea. Rev., 118, 10111028, doi:10.1175/1520-0493(1990)118<1011:MMBIAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grim, J. A., R. M. Rauber, G. M. McFarquhar, B. F. Jewett, and D. P. Jorgensen, 2009: Development and forcing of the rear inflow jet in a rapidly developing and decaying squall line during BAMEX. Mon. Wea. Rev., 137, 12061229, doi:10.1175/2008MWR2503.1.

    • Search Google Scholar
    • Export Citation
  • Hildebrand, P. H., and Coauthors, 1996: The ELDORA/ASTRAIA airborne Doppler weather radar: High-resolution observations from TOGA COARE. Bull. Amer. Meteor. Soc., 77, 213232, doi:10.1175/1520-0477(1996)077<0213:TEADWR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 1973: A climatological study of vertical transports by cumulus-scale convection. J. Atmos. Sci., 30, 11121123, doi:10.1175/1520-0469(1973)030<1112:ACSOVT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, doi:10.1029/2004RG000150.

  • Houze, R. A., S. S. Chen, D. E. Kingsmill, Y. Serra, and S. E. Yuter, 2000: Convection over the Pacific warm pool in relation to the atmospheric Kelvin–Rossby wave. J. Atmos. Sci., 57, 30583089, doi:10.1175/1520-0469(2000)057<3058:COTPWP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain Eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., P. H. Hildebrand, and C. L. Frush, 1983: Feasibility test of an airborne pulse-Doppler meteorological radar. J. Climate Appl. Meteor., 22, 744757, doi:10.1175/1520-0450(1983)022<0744:FTOAAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., T. Matejka, and J. D. DuGranrut, 1996: Multi-beam techniques for deriving wind fields from airborne Doppler radars. Meteor. Atmos. Phys., 59, 83104, doi:10.1007/BF01032002.

    • Search Google Scholar
    • Export Citation
  • Joss, J., and A. Waldvogel, 1970: Raindrop size distribution and Doppler velocities. Preprints, 14th Conf. on Radar Meteorology, Tucson, AZ, Amer. Meteor. Soc., 153156.

  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Keyser, D. A., and D. R. Johnson, 1984: Effects of diabatic heating on the ageostrophic circulation of an upper tropospheric jet streak. Mon. Wea. Rev., 112, 17091724, doi:10.1175/1520-0493(1984)112<1709:EODHOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kropfli, R. A., and L. S. Miller, 1976: Kinematic structure and flux quantities in a convective storm from dual-Doppler radar observations. J. Atmos. Sci., 33, 520529, doi:10.1175/1520-0469(1976)033<0520:KSAFQI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Leise, J. A., 1982: A multi-dimensional scale-telescoped filter and data extension package. NOAA Tech. Memo. ERL/WPL-82, Wave Propagation Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, 19 pp.

  • LeMone, M. A., 1983: Momentum transport by a line of cumulonimbus. J. Atmos. Sci., 40, 18151834, doi:10.1175/1520-0469(1983)040<1815:MTBALO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., and M. W. Moncrieff, 1994: Momentum and mass transport by convective bands: Comparisons of highly idealized dynamical models to observations. J. Atmos. Sci., 51, 281305, doi:10.1175/1520-0469(1994)051<0281:MAMTBC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lipps, F. B., and R. S. Hemler, 1991: Numerical modeling of a midlatitude squall line: Features of the convection and vertical momentum flux. J. Atmos. Sci., 48, 19091929, doi:10.1175/1520-0469(1991)048<1909:NMOAMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mahoney, K. M., G. M. Lackmann, and M. D. Parker, 2009: The role of momentum transport in the motion of a quasi-idealized mesoscale convective system. Mon. Wea. Rev., 137, 33163338, doi:10.1175/2009MWR2895.1.

    • Search Google Scholar
    • Export Citation
  • Mechem, D. B., S. S. Chen, and R. A. Houze, 2006: Momentum transport processes in the stratiform regions of mesoscale convective systems over the western Pacific warm pool. Quart. J. Roy. Meteor. Soc., 132, 709736, doi:10.1256/qj.04.141.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, doi:10.1175/2008MWR2556.1.

    • Search Google Scholar
    • Export Citation
  • National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce, 2005: NCEP North American Regional Reanalysis (NARR). Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, accessed 27 January 2015. [Available online at http://rda.ucar.edu/datasets/ds608.0/.]

  • Newton, C. W., 1950: Structure and mechanism of the prefrontal squall line. J. Meteor., 7, 210222, doi:10.1175/1520-0469(1950)007<0210:SAMOTP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ninomiya, K., 1971a: Dynamical analysis of outflow from tornado-producing thunderstorms as revealed by ATS III pictures. J. Appl. Meteor., 10, 275294, doi:10.1175/1520-0450(1971)010<0275:DAOOFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ninomiya, K., 1971b: Mesoscale modification of synoptic situations from thunderstorm development as revealed by ATS III and aerological data. J. Appl. Meteor., 10, 11031121, doi:10.1175/1520-0450(1971)010<1103:MMOSSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • O’Brien, J. J., 1970: Alternative solutions to the classical vertical velocity problem. J. Appl. Meteor., 9, 197203, doi:10.1175/1520-0450(1970)009<0197:ASTTCV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Oye, R., C. Mueller, and S. Smith, 1995: Software for radar translation, visualization, editing, and interpolation. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 359361.

  • Perkey, D. J., and R. A. Maddox, 1985: A numerical investigation of a mesoscale convective system. Mon. Wea. Rev., 113, 553566, doi:10.1175/1520-0493(1985)113<0553:ANIOAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ross, B. B., and I. Orlanski, 1978: The circulation associated with a cold front. Part II: Moist case. J. Atmos. Sci., 35, 445465, doi:10.1175/1520-0469(1978)035<0445:TCAWAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and J. B. Klemp, 1982: The influence of the shear-induced pressure gradient on thunderstorm motion. Mon. Wea. Rev., 110, 136151, doi:10.1175/1520-0493(1982)110<0136:TIOTSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, doi:10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sanders, F., and K. A. Emanuel, 1977: The momentum budget and temporal evolution of a mesoscale convective system. J. Atmos. Sci., 34, 322330, doi:10.1175/1520-0469(1977)034<0322:TMBATE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schlesinger, R. E., 1975: A three-dimensional numerical model of an isolated deep convective cloud: Preliminary results. J. Atmos. Sci., 32, 934957, doi:10.1175/1520-0469(1975)032<0934:ATDNMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schmidt, J. M., and W. R. Cotton, 1990: Interactions between upper and lower tropospheric gravity waves on squall line structure and maintenance. J. Atmos. Sci., 47, 12051222, doi:10.1175/1520-0469(1990)047<1205:IBUALT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Smith, A. M., G. M. McFarquhar, R. M. Rauber, J. A. Grim, M. S. Timlin, B. F. Jewett, and D. P. Jorgensen, 2009: Microphysical and thermodynamic structure and evolution of the trailing stratiform regions of mesoscale convective systems during BAMEX. Part I: Observations. Mon. Wea. Rev., 137, 11651185, doi:10.1175/2008MWR2504.1.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., 1996: Effects of persistent, midlatitude mesoscale regions of convection on the large-scale environment during the warm season. J. Atmos. Sci., 53, 35033527, doi:10.1175/1520-0469(1996)053<3503:EOPMMR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stoelinga, M. T., J. D. Locatelli, R. D. Schwartz, and P. V. Hobbs, 2003: Is a cold pool necessary for the maintenance of a squall line produced by a cold front aloft? Mon. Wea. Rev., 131, 95115, doi:10.1175/1520-0493(2003)131<0095:IACPNF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Storm, B. A., M. D. Parker, and D. P. Jorgensen, 2007: A convective line with leading stratiform precipitation from BAMEX. Mon. Wea. Rev., 135, 17691785, doi:10.1175/MWR3392.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., M. A. LeMone, and W. C. Skamarock, 1998: Effect of three-dimensional structure on the stormwide horizontal accelerations and momentum budget of a simulated squall line. Mon. Wea. Rev., 126, 25802598, doi:10.1175/1520-0493(1998)126<2580:EOTDSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., H. Cai, and H. V. Murphey, 2004: The Superior, Nebraska, supercell during BAMEX. Bull. Amer. Meteor. Soc., 85, 10951106, doi:10.1175/BAMS-85-8-1095.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., H. V. Murphey, C. A. Davis, and N. T. Atkins, 2006a: High winds generated by bow echoes. Part II: The relationship between the mesovortices and damaging straight-line winds. Mon. Wea. Rev., 134, 28132829, doi:10.1175/MWR3216.1.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., H. V. Murphey, A. Nester, D. P. Jorgensen, and N. T. Atkins, 2006b: High winds generated by bow echoes. Part I: Overview of the Omaha bow echo 5 July 2003 storm during BAMEX. Mon. Wea. Rev., 134, 27932812, doi:10.1175/MWR3215.1.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., P. Stauffer, and W.-C. Lee, 2015: The vertical vorticity structure within a squall line observed during BAMEX: Banded vorticity features and the evolution of a bowing segment. Mon. Wea. Rev., 143, 341362, doi:10.1175/MWR-D-14-00246.1.

    • Search Google Scholar
    • Export Citation
  • Wilhelmson, R. B., and J. B. Klemp, 1978: A numerical study of storm splitting that leads to long-lived storms. J. Atmos. Sci., 35, 19741986, doi:10.1175/1520-0469(1978)035<1974:ANSOSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wolf, B. J., and D. R. Johnson, 1995a: The mesoscale forcing of a midlatitude upper-tropospheric jet streak by a simulated convective system. Part II: Kinetic energy and resolution analysis. Mon. Wea. Rev., 123, 10881111, doi:10.1175/1520-0493(1995)123<1088:TMFOAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wolf, B. J., and D. R. Johnson, 1995b: The mesoscale forcing of a midlatitude upper-tropospheric jet streak by a simulated convective system. Part I: Mass circulation and ageostrophic processes. Mon. Wea. Rev., 123, 10591087, doi:10.1175/1520-0493(1995)123<1059:TMFOAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wyss, J., and K. A. Emanuel, 1988: The pre-storm environment of midlatitude prefrontal squall lines. Mon. Wea. Rev., 116, 790794, doi:10.1175/1520-0493(1988)116<0790:TPSEOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, M.-J., and R. A. Houze, 1996: Momentum budget of a squall line with trailing stratiform precipitation: Calculations with a high-resolution numerical model. J. Atmos. Sci., 53, 36293652, doi:10.1175/1520-0469(1996)053<3629:MBOASL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze, 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 19411963, doi:10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., K. Gao, and D. B. Parsons, 1989: Numerical simulation of an intense squall line during 10–11 June 1985 PRE-STORM. Part I: Model verification. Mon. Wea. Rev., 117, 960994, doi:10.1175/1520-0493(1989)117<0960:NSOAIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 171 68 16
PDF Downloads 136 48 15