Kinematic Structure of Mesovortices in the Eyewall of Hurricane Ike (2008) Derived from Ground-Based Dual-Doppler Analysis

Stephanie M. Wingo Severe Weather Institute and Radar and Lightning Laboratories, University of Alabama in Huntsville, Huntsville, Alabama

Search for other papers by Stephanie M. Wingo in
Current site
Google Scholar
PubMed
Close
and
Kevin R. Knupp Severe Weather Institute and Radar and Lightning Laboratories, University of Alabama in Huntsville, Huntsville, Alabama

Search for other papers by Kevin R. Knupp in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Previous work has shown that vorticity mixing in the tropical cyclone (TC) inner core can promote mesovortex (MV) formation and impact storm intensity. Observations of MVs have largely been serendipitous but are necessary to improve understanding of these features and their role in TC dynamics. This study presents nearly 10 h of ground-based dual-Doppler analysis of MVs in the eyewall of Hurricane Ike (2008) near and during landfall. Derived 3D winds, vertical vorticity, horizontal divergence, and perturbation pressures are analyzed. Results indicate persistent kinematic field arrangements and evolving vertical structures. Perturbation pressure retrievals suggest local pressure minima associated with the MVs. Preferential updraft locations appear to transition cyclonically about the local vorticity maximum as the MVs progress around the eye. Based on published observational datasets, the dual-Doppler updraft magnitudes in Ike’s MVs are within the top 5%–10% of TC vertical velocities. The MVs are marked by peak vorticity in the lowest 2 km and contain vertically coherent vorticity structures extending to 8 km AGL. After prolonged land interaction, the MV structures deteriorate. First, the vertical extent of localized vorticity diminishes, followed by a deterioration in the prelandfall characteristic kinematic arrangements. This supports the notion that the replenishment of a high vorticity annulus contributes to MV production and maintenance, and when the elevated vorticity aloft is not maintained, MV kinematic patterns become less consistent. It is unclear whether the decay of the vertically coherent vorticity structures occurs in response to land interaction, TC inner core processes, or some combination of both.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/MWR-D-16-0085.s1.

Current affiliation: Science Systems and Applications, Inc., NASA Wallops Flight Facility, Wallops Island, Virginia.

Corresponding author address: Stephanie M. Wingo, Science Systems and Applications, Inc., NASA Wallops Flight Facility, Code 612, Building N-159, Room E-213, Wallops Island, VA 23337. E-mail: stephanie.m.wingo@nasa.gov

Abstract

Previous work has shown that vorticity mixing in the tropical cyclone (TC) inner core can promote mesovortex (MV) formation and impact storm intensity. Observations of MVs have largely been serendipitous but are necessary to improve understanding of these features and their role in TC dynamics. This study presents nearly 10 h of ground-based dual-Doppler analysis of MVs in the eyewall of Hurricane Ike (2008) near and during landfall. Derived 3D winds, vertical vorticity, horizontal divergence, and perturbation pressures are analyzed. Results indicate persistent kinematic field arrangements and evolving vertical structures. Perturbation pressure retrievals suggest local pressure minima associated with the MVs. Preferential updraft locations appear to transition cyclonically about the local vorticity maximum as the MVs progress around the eye. Based on published observational datasets, the dual-Doppler updraft magnitudes in Ike’s MVs are within the top 5%–10% of TC vertical velocities. The MVs are marked by peak vorticity in the lowest 2 km and contain vertically coherent vorticity structures extending to 8 km AGL. After prolonged land interaction, the MV structures deteriorate. First, the vertical extent of localized vorticity diminishes, followed by a deterioration in the prelandfall characteristic kinematic arrangements. This supports the notion that the replenishment of a high vorticity annulus contributes to MV production and maintenance, and when the elevated vorticity aloft is not maintained, MV kinematic patterns become less consistent. It is unclear whether the decay of the vertically coherent vorticity structures occurs in response to land interaction, TC inner core processes, or some combination of both.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/MWR-D-16-0085.s1.

Current affiliation: Science Systems and Applications, Inc., NASA Wallops Flight Facility, Wallops Island, Virginia.

Corresponding author address: Stephanie M. Wingo, Science Systems and Applications, Inc., NASA Wallops Flight Facility, Code 612, Building N-159, Room E-213, Wallops Island, VA 23337. E-mail: stephanie.m.wingo@nasa.gov

Supplementary Materials

    • Supplemental Materials (GIF 4.45 MB)
Save
  • Aberson, S. D., M. T. Montgomery, M. Bell, and M. Black, 2006: Hurricane Isabel (2003): New insights into the physics of intense storms. Part II: Extreme localized wind. Bull. Amer. Meteor. Soc., 87, 13491354, doi:10.1175/BAMS-87-10-1349.

    • Search Google Scholar
    • Export Citation
  • Armijo, L., 1969: A theory for the determination of wind and precipitation velocities with Doppler radars. J. Atmos. Sci., 26, 570573, doi:10.1175/1520-0469(1969)026<0570:ATFTDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Asefi-Najafabady, S., K. Knupp, J. Mecikalski, R. Welch, and D. Phillips, 2010: Ground-based measurements and dual-Doppler analysis of 3-D wind fields and atmospheric circulations induced by a meso-γ-scale inland lake. J. Geophys. Res., 115, D23117, doi:10.1029/2010JD014022.

    • Search Google Scholar
    • Export Citation
  • Barnes, G. M., and M. D. Powell, 1995: Evolution of the inflow boundary layer of Hurricane Gilbert (1988). Mon. Wea. Rev., 123, 23482368, doi:10.1175/1520-0493(1995)123<2348:EOTIBL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bell, M. M., and M. T. Montgomery, 2008: Observed structure, evolution, and potential intensity of category-5 Hurricane Isabel (2003) from 12 to 14 September. Mon. Wea. Rev., 136, 20232046, doi:10.1175/2007MWR1858.1.

    • Search Google Scholar
    • Export Citation
  • Berg, R., 2009: Tropical Cyclone Report: Hurricane Ike. National Hurricane Center Rep. AL092008, 55 pp. [Available online at http://www.nhc.noaa.gov/data/tcr/AL092008_Ike.pdf.]

  • Black, M. L., R. W. Burpee, and F. D. Marks, 1996: Vertical motion characteristics of tropical cyclones determined with airborne Doppler radial velocities. J. Atmos. Sci., 53, 18871909, doi:10.1175/1520-0469(1996)053<1887:VMCOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and L. Wu, 2007: A numerical study of Hurricane Erin (2001). Part II: Shear and the organization of eyewall vertical motion. Mon. Wea. Rev., 135, 11791194, doi:10.1175/MWR3336.1.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., M. T. Montgomery, and Z. Pu, 2006: High-resolution simulation of Hurricane Bonnie (1998). Part I: The organization of eyewall vertical motion. J. Atmos. Sci., 63, 1942, doi:10.1175/JAS3598.1.

    • Search Google Scholar
    • Export Citation
  • Brown, D. P., J. L. Beven, J. L. Franklin, and E. S. Blake, 2010: Atlantic hurricane season of 2008. Mon. Wea. Rev., 138, 19752001, doi:10.1175/2009MWR3174.1.

    • Search Google Scholar
    • Export Citation
  • Chong, M., and J. Testud, 1983: Three-dimensional wind field analysis from dual-doppler radar data. Part III: The boundary condition: An optimum determination based on a variational concept. J. Climate Appl. Meteor., 22, 12271241, doi:10.1175/1520-0450(1983)022<1227:TDWFAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chong, M., J. Testud, and F. Roux, 1983: Three-dimensional wind field analysis from dual-Doppler radar data. Part II: Minimizing the error due to temporal variation. J. Climate Appl. Meteor., 22, 12161226, doi:10.1175/1520-0450(1983)022<1216:TDWFAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clark, T. L., F. I. Harris, and C. G. Mohr, 1980: Errors in wind fields derived from multiple-Doppler radars: Random errors and temporal errors associated with advection and evolution. J. Appl. Meteor., 19, 12731284, doi:10.1175/1520-0450(1980)019<1273:EIWFDF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cram, T. A., J. Persing, M. T. Montgomery, and S. A. Braun, 2007: A Lagrangian trajectory view on transport and mixing processes between the eye, eyewall, and environment using a high-resolution simulation of Hurricane Bonnie (1998). J. Atmos. Sci., 64, 18351856, doi:10.1175/JAS3921.1.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. Academic Press, 562 pp.

  • Doviak, R. J., P. S. Ray, R. G. Strauch, and L. J. Miller, 1976: Error estimation in wind fields derived from dual-Doppler radar measurement. J. Appl. Meteor., 15, 868878, doi:10.1175/1520-0450(1976)015<0868:EEIWFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., P. G. Black, and W. M. Gray, 2005: Buoyancy of convective vertical motions in the inner core of intense hurricanes. Part II: Case studies. Mon. Wea. Rev., 133, 209227, doi:10.1175/MWR-2849.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1991: The theory of hurricanes. Annu. Rev. Fluid Mech., 23, 179196, doi:10.1146/annurev.fl.23.010191.001143.

  • Gal-Chen, T., 1978: A method for the initialization of the anelastic equation: Implications for matching models with observations. Mon. Wea. Rev., 106, 587606, doi:10.1175/1520-0493(1978)106<0587:AMFTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hane, C. E., R. B. Wilhelmson, and T. Gal-Chen, 1981: Retrieval of thermodynamic variables within deep convective clouds: Experiments in three dimensions. Mon. Wea. Rev., 109, 564576, doi:10.1175/1520-0493(1981)109<0564:ROTVWD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., and W. H. Schubert, 2010: Adiabatic rearrangement of hollow PV towers. J. Adv. Model. Earth Syst., 2 (4), doi:10.3894/JAMES.2010.2.8.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., W. H. Schubert, R. K. Taft, H. Wang, and J. P. Kossin, 2009: Life cycles of hurricane-like vorticity rings. J. Atmos. Sci., 66, 705722, doi:10.1175/2008JAS2820.1.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., B. D. McNoldy, and W. H. Schubert, 2012: Observed inner-core structural variability in Hurricane Dolly (2008). Mon. Wea. Rev., 140, 40664077, doi:10.1175/MWR-D-12-00018.1.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., W. H. Schubert, Y.-H. Chen, H.-C. Kuo, and M. S. Peng, 2014: Hurricane eyewall evolution in a forced shallow-water model. J. Atmos. Sci., 71, 16231643, doi:10.1175/JAS-D-13-0303.1.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., E. J. Zipser, and M. A. LeMone, 1985: Vertical motions in intense hurricanes. J. Atmos. Sci., 42, 839856, doi:10.1175/1520-0469(1985)042<0839:VMIIH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and M. D. Eastin, 2001: Two distinct regimes in the kinematic and thermodynamic structure of the hurricane eye and eyewall. J. Atmos. Sci., 58, 10791090, doi:10.1175/1520-0469(2001)058<1079:TDRITK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and W. H. Schubert, 2001: Mesovortices, polygonal flow patterns, and rapid pressure falls in hurricane-like vortices. J. Atmos. Sci., 58, 21962209, doi:10.1175/1520-0469(2001)058<2196:MPFPAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and W. H. Schubert, 2004: Mesovortices in Hurricane Isabel. Bull. Amer. Meteor. Soc., 85, 151153, doi:10.1175/BAMS-85-2-151.

    • Search Google Scholar
    • Export Citation
  • Lewis, B., and H. Hawkins, 1982: Polygonal eye walls and rainbands in hurricanes. Bull. Amer. Meteor. Soc., 63, 12941301, doi:10.1175/1520-0477(1982)063<1294:PEWARI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, X., J. A. Zhang, X. Yang, W. G. Pichel, M. DeMaria, D. Long, and Z. Li, 2013: Tropical cyclone morphology from spaceborne synthetic aperture radar. Bull. Amer. Meteor. Soc., 94, 215230, doi:10.1175/BAMS-D-11-00211.1.

    • Search Google Scholar
    • Export Citation
  • Marks, F. D., and R. A. Houze, 1984: Airborne Doppler radar observations in Hurricane Debby. Bull. Amer. Meteor. Soc., 65, 569582, doi:10.1175/1520-0477(1984)065<0569:ADROIH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marks, F. D., P. G. Black, M. T. Montgomery, and R. W. Burpee, 2008: Structure of the eye and eyewall of Hurricane Hugo (1989). Mon. Wea. Rev., 136, 12371259, doi:10.1175/2007MWR2073.1.

    • Search Google Scholar
    • Export Citation
  • Martinez, Y. H., G. Brunet, and M. K. Yau, 2010: On the dynamics of two-dimensional hurricane-like vortex symmetrization. J. Atmos. Sci., 67, 35593580, doi:10.1175/2010JAS3499.1.

    • Search Google Scholar
    • Export Citation
  • Matejka, T., and D. L. Bartels, 1998: The accuracy of vertical air velocities from Doppler radar data. Mon. Wea. Rev., 126, 92117, doi:10.1175/1520-0493(1998)126<0092:TAOVAV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Menelaou, K., M. K. Yau, and Y. Martinez, 2013: On the origin and impact of a polygonal eyewall in the rapid intensification of Hurricane Wilma (2005). J. Atmos. Sci., 70, 38393858, doi:10.1175/JAS-D-13-091.1.

    • Search Google Scholar
    • Export Citation
  • Miller, L. J., and R. G. Strauch, 1974: A dual Doppler radar method for the determination of wind velocities within precipitating weather systems. Remote Sens. Environ., 3, 219235, doi:10.1016/0034-4257(74)90044-3.

    • Search Google Scholar
    • Export Citation
  • Mohr, C. G., L. J. Miller, R. L. Vaughn, and H. W. Frank, 1986: The merger of mesoscale datasets into a common Cartesian format for efficient and systematic analyses. J. Atmos. Oceanic Technol., 3, 143161, doi:10.1175/1520-0426(1986)003<0143:TMOMDI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., P. Dodge, D. Vollaro, K. Corbosiero, and F. Marks, 2006: Mesoscale aspects of the downshear reformation of a tropical cyclone. J. Atmos. Sci., 63, 341354, doi:10.1175/JAS3591.1.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., V. A. Vladimirov, and P. V. Denissenko, 2002: An experimental study on hurricane mesovortices. J. Fluid Mech., 471, 132, doi:10.1017/S0022112002001647.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. M. Bell, S. D. Aberson, and M. Black, 2006: Hurricane Isabel (2003): New insights into the physics of intense storms. Part I: Mean vortex structure and maximum intensity estimates. Bull. Amer. Meteor. Soc., 87, 13351347, doi:10.1175/BAMS-87-10-1335.

    • Search Google Scholar
    • Export Citation
  • Murphy, T. A., and K. R. Knupp, 2013: An analysis of cold season supercell storms using the synthetic dual-Doppler technique. Mon. Wea. Rev., 141, 602624, doi:10.1175/MWR-D-12-00035.1.

    • Search Google Scholar
    • Export Citation
  • Naylor, J., and D. A. Schecter, 2014: Evaluation of the impact of moist convection on the development of asymmetric inner core instabilities in simulated tropical cyclones. J. Adv. Model. Earth Syst., 6, 10271048, doi:10.1002/2014MS000366.

    • Search Google Scholar
    • Export Citation
  • Nguyen, L. T., and J. Molinari, 2015: Simulation of the downshear reformation of a tropical cyclone. J. Atmos. Sci., 72, 45294551, doi:10.1175/JAS-D-15-0036.1.

    • Search Google Scholar
    • Export Citation
  • Persing, J., and M. T. Montgomery, 2003: Hurricane superintensity. J. Atmos. Sci., 60, 23492371, doi:10.1175/1520-0469(2003)060<2349:HS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ray, P. S., M. Gilet, and K. W. Johnson, 1980: The multiple Doppler radar workshop, November 1979. Part IV: Motion field synthesis and radar placement. Bull. Amer. Meteor. Soc., 61, 11841189, doi:10.1175/1520-0477(1980)061<1184:PIMFSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, F. D. Marks, and J. F. Gamache, 2000: Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar. Mon. Wea. Rev., 128, 16531680, doi:10.1175/1520-0493(2000)128<1653:LWSAEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. D. Eastin, and J. F. Gamache, 2009: Rapidly intensifying Hurricane Guillermo (1997). Part I: Low-wavenumber structure and evolution. Mon. Wea. Rev., 137, 603631, doi:10.1175/2008MWR2487.1.

    • Search Google Scholar
    • Export Citation
  • Roux, F., 1985: Retrieval of thermodynamic fields from multiple-Doppler radar data using the equations of motion and the thermodynamic equation. Mon. Wea. Rev., 113, 21422157, doi:10.1175/1520-0493(1985)113<2142:ROTFFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., J. P. Kossin, W. H. Schubert, and P. J. Mulero, 2009: Internal control of hurricane intensity variability: The dual nature of potential vorticity mixing. J. Atmos. Sci., 66, 133147, doi:10.1175/2008JAS2717.1.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., M. T. Montgomery, R. K. Taft, T. A. Guinn, S. R. Fulton, J. P. Kossin, and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56, 11971223, doi:10.1175/1520-0469(1999)056<1197:PEAECA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sitkowski, M., and G. M. Barnes, 2009: Low-level thermodynamic, kinematic, and reflectivity fields of Hurricane Guillermo (1997) during rapid intensification. Mon. Wea. Rev., 137, 645663, doi:10.1175/2008MWR2531.1.

    • Search Google Scholar
    • Export Citation
  • Terwey, W. D., and M. T. Montgomery, 2002: Wavenumber-2 and wavenumber-m vortex Rossby wave instabilities in a generalized three-region model. J. Atmos. Sci., 59, 24212427, doi:10.1175/1520-0469(2002)059<2421:WAWMVR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Testud, J., and M. Chong, 1983: Three-dimensional wind field analysis from dual-Doppler radar data. Part I: Filtering, interpolating, and differentiating the raw data. J. Climate Appl. Meteor., 22, 12041215, doi:10.1175/1520-0450(1983)022<1204:TDWFAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H., and P. Black, 1996: Hurricane Andrew in Florida: Dynamics of a disaster. Bull. Amer. Meteor. Soc., 77, 543549, doi:10.1175/1520-0477(1996)077<0543:HAIFDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wroe, D. R., and G. M. Barnes, 2003: Inflow layer energetics of Hurricane Bonnie (1998) near landfall. Mon. Wea. Rev., 131, 16001612, doi:10.1175//2547.1.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., H.-J. Cheng, Y. Wang, and K.-H. Chou, 2009: A numerical investigation of the eyewall evolution in a landfalling typhoon. Mon. Wea. Rev., 137, 2140, doi:10.1175/2008MWR2516.1.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., S.-N. Wu, H.-H. Wei, and S. F. Abarca, 2016: The role of convective heating in tropical cyclone eyewall ring evolution. J. Atmos. Sci., 73, 319330, doi:10.1175/JAS-D-15-0085.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 565 150 20
PDF Downloads 430 112 12