Spectral Characteristics of Convective-Scale Precipitation Observations and Forecasts

May Wong National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by May Wong in
Current site
Google Scholar
PubMed
Close
and
William C. Skamarock National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by William C. Skamarock in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

As an alternative to traditional precipitation analysis and forecast verification, 1D and 2D spectral decompositions of NCEP/Stage IV and Multi-Radar Multi-Sensor (MRMS) precipitation products and convective-scale model forecasts are examined. Both the stage IV and MRMS analyses and the model forecasts show a similar weak power-law behavior in 1D spectral decompositions, although the MRMS analysis does not drop off in power at wavelengths less than approximately 20 km as found in the stage IV analysis. The convective-scale forecasts produce similar behavior to the MRMS when the forecast model’s effective resolution is sufficient. Neither the MRMS analyses nor the forecasts suggest the existence of a break in the spectral slope at the scales for which the analyses and forecasts are valid. The 2D spectra of both observations and forecasts, expressed in terms of an absolute wavenumber and azimuthal angle, show power varying significantly as a function of azimuthal angle for a given wavenumber. This azimuthal anisotropy is significant, and is dominated by the second mode (wavenumber 2). The phase of the mode is the result of the orientation of precipitation features and, hence, convective system orientations and propagation. Observations show a shift in orientation (phase) over May–June–July. The convective forecasts reproduce this shift in phase, although with a consistent but small phase error.

Corresponding author address: May Wong, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: mwong@ucar.edu

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Abstract

As an alternative to traditional precipitation analysis and forecast verification, 1D and 2D spectral decompositions of NCEP/Stage IV and Multi-Radar Multi-Sensor (MRMS) precipitation products and convective-scale model forecasts are examined. Both the stage IV and MRMS analyses and the model forecasts show a similar weak power-law behavior in 1D spectral decompositions, although the MRMS analysis does not drop off in power at wavelengths less than approximately 20 km as found in the stage IV analysis. The convective-scale forecasts produce similar behavior to the MRMS when the forecast model’s effective resolution is sufficient. Neither the MRMS analyses nor the forecasts suggest the existence of a break in the spectral slope at the scales for which the analyses and forecasts are valid. The 2D spectra of both observations and forecasts, expressed in terms of an absolute wavenumber and azimuthal angle, show power varying significantly as a function of azimuthal angle for a given wavenumber. This azimuthal anisotropy is significant, and is dominated by the second mode (wavenumber 2). The phase of the mode is the result of the orientation of precipitation features and, hence, convective system orientations and propagation. Observations show a shift in orientation (phase) over May–June–July. The convective forecasts reproduce this shift in phase, although with a consistent but small phase error.

Corresponding author address: May Wong, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: mwong@ucar.edu

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Save
  • Bacmeister, J. T., S. D. Eckermann, P. A. Newman, L. Lait, K. R. Chan, M. Loewenstein, M. H. Proffitt, and B. L. Gary, 1996: Stratospheric horizontal wavenumber spectra of winds, potential temperature, and atmospheric tracers observed by high-altitude aircraft. J. Geophys. Res., 101, 94419470, doi:10.1029/95JD03835.

    • Search Google Scholar
    • Export Citation
  • Bierdel, L., P. Friederichs, and S. Bentzien, 2012: Upscale error growth in a high-resolution simulation of a summertime weather event over Europe. Meteor. Z., 21, 245258, doi:10.1127/0941-2948/2012/0319.

    • Search Google Scholar
    • Export Citation
  • Blažica, V., N. Gustafsson, and N. Žagar, 2015: The impact of periodization methods on the kinetic energy spectra for limited-area numerical weather prediction models. Geosci. Model Dev., 8, 8797, doi:10.5194/gmd-8-87-2015.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416, doi:10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., J. D. Tuttle, D. A. Ahijevych, and S. B. Trier, 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59, 20332056, doi:10.1175/1520-0469(2002)059<2033:IOPAWW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cho, J. Y. N., and E. Lindborg, 2001: Horizontal velocity structure functions in the upper troposphere and lower stratosphere: 1. Observations. J. Geophys. Res., 106, 10 22310 232, doi:10.1029/2000JD900814.

    • Search Google Scholar
    • Export Citation
  • Crane, R. K., 1990: Space-time structure of rain rate fields. J. Geophys. Res., 95, 20112020, doi:10.1029/JD095iD03p02011.

  • Davis, C., B. Brown, and R. Bullock, 2006: Object-based verification of precipitation forecasts. Part I: Methodology and application to mesoscale rain areas. Mon. Wea. Rev., 134, 17721784, doi:10.1175/MWR3145.1.

    • Search Google Scholar
    • Export Citation
  • Errico, R. M., 1985: Spectra computed from a limited area grid. Mon. Wea. Rev., 113, 15541562, doi:10.1175/1520-0493(1985)113<1554:SCFALA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gilleland, E., D. Ahijevych, B. G. Brown, B. Casati, and E. E. Ebert, 2009: Intercomparison of spatial forecast verification methods. Wea. Forecasting, 24, 14161430, doi:10.1175/2009WAF2222269.1.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and S. R. Freitas, 2014: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys., 14, 52335250, doi:10.5194/acp-14-5233-2014.

    • Search Google Scholar
    • Export Citation
  • Hamilton, K., Y. O. Takahashi, and W. Ohfuchi, 2008: Mesoscale spectrum of atmospheric motions investigated in a very fine resolution global general circulation model. J. Geophys. Res., 113, D18110, doi:10.1029/2008JD009785.

    • Search Google Scholar
    • Export Citation
  • Harris, D., E. Foufoula-Georgiou, K. K. Droegemeier, and J. J. Levit, 2001: Multiscale statistical properties of a high-resolution precipitation forecast. J. Hydrometeor., 2, 406418, doi:10.1175/1525-7541(2001)002<0406:MSPOAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harris, F. J., 1978: On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE, 66, 5183, doi:10.1109/PROC.1978.10837.

    • Search Google Scholar
    • Export Citation
  • Hinkelman, L. M., B. Stevens, and K. F. Evans, 2005: A large-eddy simulation study of anisotropy in fair-weather cumulus cloud fields. J. Atmos. Sci., 62, 21552171, doi:10.1175/JAS3463.1.

    • Search Google Scholar
    • Export Citation
  • Hinkelman, L. M., K. F. Evans, E. E. Clothiaux, T. P. Ackerman, and P. W. Stackhouse Jr., 2007: The effect of cumulus cloud field anisotropy on domain-averaged solar fluxes and atmospheric heating rates. J. Atmos. Sci., 64, 34993520, doi:10.1175/JAS4032.1.

    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., and J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Horn, L. H., and R. A. Bryson, 1963: An analysis of the geostrophic kinetic energy spectrum of large-scale atmospheric turbulence. J. Geophys. Res., 68, 10591064, doi:10.1029/JZ068i004p01059.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., E. J. Mlawer, and S. A. Clough, 2000: Impact of an improved longwave radiation model, RRTM, on the energy budget and thermodynamic properties of the NCAR Community Climate Model, CCM3. J. Geophys. Res., 105, 14 87314 890, doi:10.1029/2000JD900091.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2002: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso model. NCEP Office Note 437, 61 pp.

  • Jolliffe, I. T., and D. B. Stephenson, 2003: Forecast Verification: A Practitioner’s Guide in Atmospheric Science. Wiley, 240 pp.

  • Julian, P. R., W. M. Washington, L. Hembree, and C. Ridley, 1970: On the spectral distribution of large-scale atmospheric kinetic energy. J. Atmos. Sci., 27, 376387, doi:10.1175/1520-0469(1970)027<0376:OTSDOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knievel, J. C., G. H. Bryan, and J. P. Hacker, 2007: Explicit numerical diffusion in the WRF model. Mon. Wea. Rev., 135, 38083824, doi:10.1175/2007MWR2100.1.

    • Search Google Scholar
    • Export Citation
  • Langhans, W., J. Schmidli, and C. Schär, 2012: Mesoscale impacts of explicit numerical diffusion in a convection-permitting model. Mon. Wea. Rev., 140, 226244, doi:10.1175/2011MWR3650.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., and K. E. Mitchell, 2005: The NCEP stage II/IV hourly precipitation analyses: Development and applications. 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2. [Available online at https://ams.confex.com/ams/Annual2005/techprogram/paper_83847.htm.]

  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Search Google Scholar
    • Export Citation
  • Menabde, M., A. Seed, D. Harris, and G. Austin, 1999: Multiaffine random field model of rainfall. Water Resour. Res., 35, 509514, doi:10.1029/1998WR900020.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Morales, J. E., and G. Poveda, 2009: Diurnally driven scaling properties of Amazonian rainfall fields: Fourier spectra and order-q statistical moments. J. Geophys. Res., 114, D11104, doi:10.1029/2008JD011281.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2009: Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteor. Soc. Japan, 87, 895912, doi:10.2151/jmsj.87.895.

    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., and K. S. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42, 950960, doi:10.1175/1520-0469(1985)042<0950:ACOAWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., K. S. Gage, and W. H. Jasperson, 1984: Kinetic energy spectrum of large-and mesoscale atmospheric processes. Nature, 310, 3638, doi:10.1038/310036a0.

    • Search Google Scholar
    • Export Citation
  • Parodi, A., E. Foufoula-Georgiou, and K. Emanuel, 2011: Signature of microphysics on spatial rainfall statistics. J. Geophys. Res., 116, D14119, doi:10.1029/2010JD015124.

    • Search Google Scholar
    • Export Citation
  • Ricard, D., C. Lac, S. Riette, R. Legrand, and A. Mary, 2013: Kinetic energy spectra characteristics of two convection-permitting limited-area models AROME and Meso-NH. Quart. J. Roy. Meteor. Soc., 139, 13271341, doi:10.1002/qj.2025.

    • Search Google Scholar
    • Export Citation
  • Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, doi:10.1175/2007MWR2123.1.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., G. S. Romine, R. A. Sobash, K. R. Fossell, and M. L. Weisman, 2015: NCAR’s experimental real-time convection-allowing ensemble prediction system. Wea. Forecasting, 30, 16451654, doi:10.1175/WAF-D-15-0103.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, doi:10.1175/MWR2830.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Skamarock, W. C., J. B. Klemp, M. G. Duda, L. D. Fowler, S.-H. Park, and T. D. Ringler, 2012: A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Mon. Wea. Rev., 140, 30903105, doi:10.1175/MWR-D-11-00215.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., S.-H. Park, J. B. Klemp, and C. Snyder, 2014: Atmospheric kinetic energy spectra from global high-resolution nonhydrostatic simulations. J. Atmos. Sci., 71, 43694381, doi:10.1175/JAS-D-14-0114.1.

    • Search Google Scholar
    • Export Citation
  • Stephan, C., and M. J. Alexander, 2015: Realistic simulations of atmospheric gravity waves over the continental U.S. using precipitation radar data. J. Adv. Model. Earth Syst., 7, 823835, doi:10.1002/2014MS000396.

    • Search Google Scholar
    • Export Citation
  • Terasaki, K., H. L. Tanaka, and M. Satoh, 2009: Characteristics of the kinetic energy spectrum of NICAM model atmosphere. SOLA, 5, 180183, doi:10.2151/sola.2009-046.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, doi:10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tuttle, J. D., and C. A. Davis, 2006: Corridors of warm season precipitation in the central United States. Mon. Wea. Rev., 134, 22972317, doi:10.1175/MWR3188.1.

    • Search Google Scholar
    • Export Citation
  • Wiin-Nielsen, A., 1967: On the annual variation and spectral distribution of atmospheric energy. Tellus, 19A, 540559, doi:10.1111/j.2153-3490.1967.tb01507.x.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Academic Press, 704 pp.

  • Willeit, M., R. Amorati, A. Montani, V. Pavan, and M. S. Tesini, 2015: Comparison of spectral characteristics of precipitation from radar estimates and COSMO-model predicted fields. Meteor. Atmos. Phys., 127, 191203, doi:10.1007/s00703-014-0359-8.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and E. A. Brandes, 1979: Radar measurement of rainfall—A summary. Bull. Amer. Meteor. Soc., 60, 10481058, doi:10.1175/1520-0477(1979)060<1048:RMORS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., Y. Wang, and K. Hamilton, 2011: Improved representation of boundary layer clouds over the Southeast Pacific in ARW-WRF using a modified Tiedtke cumulus parameterization scheme. Mon. Wea. Rev., 139, 34893513, doi:10.1175/MWR-D-10-05091.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., Y. Qi, C. Langston, B. Kaney, and K. Howard, 2014: A real-time algorithm for merging radar QPEs with rain gauge observations and orographic precipitation climatology. J. Hydrometeor., 15, 17941809, doi:10.1175/JHM-D-13-0163.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 621638, doi:10.1175/BAMS-D-14-00174.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 417 166 18
PDF Downloads 373 132 11