Efficient Kernel-Based Ensemble Gaussian Mixture Filtering

Bo Liu King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

Search for other papers by Bo Liu in
Current site
Google Scholar
PubMed
Close
,
Boujemaa Ait-El-Fquih King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

Search for other papers by Boujemaa Ait-El-Fquih in
Current site
Google Scholar
PubMed
Close
, and
Ibrahim Hoteit King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

Search for other papers by Ibrahim Hoteit in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Bayesian filtering problem for data assimilation is considered following the kernel-based ensemble Gaussian mixture filtering (EnGMF) approach introduced by Anderson and Anderson. In this approach, the posterior distribution of the system state is propagated with the model using the ensemble Monte Carlo method, providing a forecast ensemble that is then used to construct a prior Gaussian mixture (GM) based on the kernel density estimator. This results in two update steps: a Kalman filter (KF)-like update of the ensemble members and a particle filter (PF)-like update of the weights, followed by a resampling step to start a new forecast cycle. After formulating EnGMF for any observational operator, the influence of the bandwidth parameter of the kernel function on the covariance of the posterior distribution is analyzed. Then the focus is on two aspects: (i) the efficient implementation of EnGMF with (relatively) small ensembles, where a new deterministic resampling strategy is proposed preserving the first two moments of the posterior GM to limit the sampling error; and (ii) the analysis of the effect of the bandwidth parameter on contributions of KF and PF updates and on the weights variance. Numerical results using the Lorenz-96 model are presented to assess the behavior of EnGMF with deterministic resampling, study its sensitivity to different parameters and settings, and evaluate its performance against ensemble KFs. The proposed EnGMF approach with deterministic resampling suggests improved estimates in all tested scenarios, and is shown to require less localization and to be less sensitive to the choice of filtering parameters.

Corresponding author address: Ibrahim Hoteit, King Abdullah University of Science and Technology, Division of Computer, Electrical and Mathematical Sciences and Engineering, 23955-6900 Thuwal, Saudi Arabia. E-mail: ibrahim.hoteit@kaust.edu.sa

Abstract

The Bayesian filtering problem for data assimilation is considered following the kernel-based ensemble Gaussian mixture filtering (EnGMF) approach introduced by Anderson and Anderson. In this approach, the posterior distribution of the system state is propagated with the model using the ensemble Monte Carlo method, providing a forecast ensemble that is then used to construct a prior Gaussian mixture (GM) based on the kernel density estimator. This results in two update steps: a Kalman filter (KF)-like update of the ensemble members and a particle filter (PF)-like update of the weights, followed by a resampling step to start a new forecast cycle. After formulating EnGMF for any observational operator, the influence of the bandwidth parameter of the kernel function on the covariance of the posterior distribution is analyzed. Then the focus is on two aspects: (i) the efficient implementation of EnGMF with (relatively) small ensembles, where a new deterministic resampling strategy is proposed preserving the first two moments of the posterior GM to limit the sampling error; and (ii) the analysis of the effect of the bandwidth parameter on contributions of KF and PF updates and on the weights variance. Numerical results using the Lorenz-96 model are presented to assess the behavior of EnGMF with deterministic resampling, study its sensitivity to different parameters and settings, and evaluate its performance against ensemble KFs. The proposed EnGMF approach with deterministic resampling suggests improved estimates in all tested scenarios, and is shown to require less localization and to be less sensitive to the choice of filtering parameters.

Corresponding author address: Ibrahim Hoteit, King Abdullah University of Science and Technology, Division of Computer, Electrical and Mathematical Sciences and Engineering, 23955-6900 Thuwal, Saudi Arabia. E-mail: ibrahim.hoteit@kaust.edu.sa
Save
  • Alspach, D., and H. Sorenson, 1972: Nonlinear Bayesian estimation using Gaussian sum approximations. IEEE Trans. Automat. Contrib., 17, 439448, doi:10.1109/TAC.1972.1100034.

    • Search Google Scholar
    • Export Citation
  • Altaf, M. U., T. Butler, X. Luo, C. Dawson, T. Mayo, and I. Hoteit, 2013: Improving short-range ensemble Kalman storm surge forecasting using robust adaptive inflation. Mon. Wea. Rev., 141, 27052720, doi:10.1175/MWR-D-12-00310.1.

    • Search Google Scholar
    • Export Citation
  • Altaf, M. U., T. Butler, T. Mayo, X. Luo, C. Dawson, A. W. Heemink, and I. Hoteit, 2014: A comparison of ensemble Kalman filters for storm surge assimilation. Mon. Wea. Rev., 142, 28992914, doi:10.1175/MWR-D-13-00266.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, B. D. O., and J. B. Moore, 1979: Optimal Filtering. Prentice-Hall, 357 pp.

  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903, doi:10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2007: An adaptive covariance inflation error correction algorithm for ensemble filters. Tellus, 59A, 210224, doi:10.1111/j.1600-0870.2006.00216.x.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and S. L. Anderson, 1999: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Wea. Rev., 127, 27412758, doi:10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, T., C. Snyder, and D. Nychka, 2003: Toward a nonlinear ensemble filter for high-dimensional systems. J. Geophys. Res., 108, 8775, doi:10.1029/2002JD002900.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, T., P. Bickel, and B. Li, 2008: Curse-of-dimensionality revisited: Collapse of the particle filter in very large scale systems. Inst. Math. Stat. Collect., 2, 316334, doi:10.1214/193940307000000518.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162, doi:10.1029/94JC00572.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2003: The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn., 53, 343367, doi:10.1007/s10236-003-0036-9.

    • Search Google Scholar
    • Export Citation
  • Fertig, E., J. Harlim, and B. Hunt, 2007: A comparative study of 4D-VAR and a 4D ensemble Kalman filter: Perfect model simulations with Lorenz-96. Tellus, 59A, 96100, doi: 10.1111/j.1600-0870.2006.00205.x.

    • Search Google Scholar
    • Export Citation
  • Frei, M., and H. R. Künsch, 2013a: Bridging the ensemble Kalman and particle filters. Biometrika, 100, 781800, doi:10.1093/biomet/ast020.

    • Search Google Scholar
    • Export Citation
  • Frei, M., and H. R. Künsch, 2013b: Mixture ensemble Kalman filters. Comput. Stat. Data Anal., 58, 127138, doi:10.1016/j.csda.2011.04.013.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, doi:10.1002/qj.49712555417.

    • Search Google Scholar
    • Export Citation
  • Gharamti, M., J. Valstar, and I. Hoteit, 2014: An adaptive hybrid EnKF-OI scheme for efficient state-parameter estimation of reactive contaminant transport models. Adv. Water Resour., 71, 115, doi:10.1016/j.advwatres.2014.05.001.

    • Search Google Scholar
    • Export Citation
  • Gordon, N., D. Salmond, and A. F. M. Smith, 1993: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEEE Proc. Radar Signal Process., 140, 107113, doi:10.1049/ip-f-2.1993.0015.

    • Search Google Scholar
    • Export Citation
  • Gustafsson, F., F. Gunnarsson, N. Bergman, U. Forssell, J. Jansson, R. Karlsson, and P.-J. Nordlund, 2002: Particle filters for positioning, navigation, and tracking. IEEE Trans. Signal Process., 50, 425437, doi:10.1109/78.978396.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and C. Snyder, 2000: A hybrid ensemble Kalman filter–3D variational analysis scheme. Mon. Wea. Rev., 128, 29052919, doi:10.1175/1520-0493(2000)128<2905:AHEKFV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and J. S. Whitaker, 2011: What constrains spread growth in forecasts initialized from ensemble Kalman filters? Mon. Wea. Rev., 139, 117131, doi:10.1175/2010MWR3246.1.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., J. S. Whitaker, and C. Snyder, 2001: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev., 129, 27762790, doi:10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hesterberg, T., 1991: Weighted average importance sampling and defensive mixture distributions. Tech. Rep. 148, Stanford University, 16 pp.

  • Hoteit, I., D.-T. Pham, and J. Blum, 2002: A simplified reduced order Kalman filtering and application to altimetric data assimilation in Tropical Pacific. J. Mar. Syst., 36, 101127, doi:10.1016/S0924-7963(02)00129-X.

    • Search Google Scholar
    • Export Citation
  • Hoteit, I., D.-T. Pham, G. Triantafyllou, and G. Korres, 2008: A new approximate solution of the optimal nonlinear filter for data assimilation in meteorology and oceanography. Mon. Wea. Rev., 136, 317334, doi:10.1175/2007MWR1927.1.

    • Search Google Scholar
    • Export Citation
  • Hoteit, I., X. Luo, and D.-T. Pham, 2012: Particle Kalman filtering: A nonlinear Bayesian framework for ensemble Kalman filters. Mon. Wea. Rev., 140, 528542, doi:10.1175/2011MWR3640.1.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796811, doi:10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hunt, B. R., E. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112126, doi:10.1016/j.physd.2006.11.008.

    • Search Google Scholar
    • Export Citation
  • Karimi, A., and M. R. Paul, 2010: Extensive chaos in the Lorenz-96 model. Chaos, 20, 043105, doi:10.1063/1.3496397.

  • Kim, S., G. L. Eyink, J. M. Restrepo, F. J. Alexander, and G. Johnson, 2003: Ensemble filtering for nonlinear dynamics. Mon. Wea. Rev., 131, 25862594, doi:10.1175/1520-0493(2003)131<2586:EFFND>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kivman, G. A., 2003: Sequential parameter estimation for stochastic systems. Nonlinear Processes Geophys., 10, 253259, doi:10.5194/npg-10-253-2003.

    • Search Google Scholar
    • Export Citation
  • Lermusiaux, P. F. J., 1999: Estimation and study of mesoscale variability in the strait of Sicily. Dyn. Atmos. Oceans, 29, 255303, doi:10.1016/S0377-0265(99)00008-1.

    • Search Google Scholar
    • Export Citation
  • Lermusiaux, P. F. J., 2007: Adaptive modeling, adaptive data assimilation and adaptive sampling. Physica D, 230, 172196, doi:10.1016/j.physd.2007.02.014.

    • Search Google Scholar
    • Export Citation
  • Liu, J. S., 2008: Monte Carlo Strategies in Scientific Computing. Springer, 346 pp.

  • Lorenc, A. C., 2003: The potential of the ensemble Kalman filter for NWP—A comparison with 4D-Var. Quart. J. Roy. Meteor. Soc., 129, 31833203, doi:10.1256/qj.02.132.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., and K. A. Emanuel, 1998: Optimal sites for supplementary weather observations: Simulation with a small model. J. Atmos. Sci., 55, 399414, doi:10.1175/1520-0469(1998)055<0399:OSFSWO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Luo, X., and I. Hoteit, 2011: Robust ensemble filtering and its relation to covariance inflation in the ensemble Kalman filter. Mon. Wea. Rev., 139, 39383953, doi:10.1175/MWR-D-10-05068.1.

    • Search Google Scholar
    • Export Citation
  • Luo, X., I. M. Moroz, and I. Hoteit, 2010: Scaled unscented transform Gaussian sum filter: Theory and application. Physica D, 239, 684701, doi:10.1016/j.physd.2010.01.022.

    • Search Google Scholar
    • Export Citation
  • Luo, X., I. Hoteit, and I. Moroz, 2012: On a nonlinear Kalman filter with simplified divided difference approximation. Physica D, 241, 671680, doi:10.1016/j.physd.2011.12.003.

    • Search Google Scholar
    • Export Citation
  • Mandel, J., 2006: Efficient implementation of the ensemble Kalman filter. CCM Rep. 231, Denver and Health Sciences Center, University of Colorado, 7 pp.

  • Musso, C., N. Oujdane, and F. L. Gland, 2001: Improving regularised particle filters. Sequential Monte Carlo Methods in Practice, A. Doucet, N. de Freitas, and N. Gordon, Eds., Springer, 247–271.

  • Nakano, S., G. Ueno, and T. Higuchi, 2007: Merging particle filter for sequential data assimilation. Nonlinear Processes Geophys., 14, 395408, doi:10.5194/npg-14-395-2007.

    • Search Google Scholar
    • Export Citation
  • Nerger, L., W. Hiller, and J. Schröter, 2005: A comparison of error subspace Kalman filters. Tellus, 57A, 715735, doi:10.1111/j.1600-0870.2005.00141.x.

    • Search Google Scholar
    • Export Citation
  • Pham, D. T., 2001: Stochastic methods for sequential data assimilation in strongly nonlinear systems. Mon. Wea. Rev., 129, 11941207, doi:10.1175/1520-0493(2001)129<1194:SMFSDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Robert, C. P., and G. Casella, 2004: Monte Carlo Statistical Methods. Springer-Verlag, 645 pp.

  • Scott, D. W., 1992: Multivariate Density Estimation: Theory, Practice, and Visualization. Wiley-Interscience, 317 pp.

  • Silverman, B. W., 1986: Density Estimation for Statistics and Data Analysis. Chapman and Hall, 175 pp.

  • Smith, K. W., 2007: Cluster ensemble Kalman filter. Tellus, 59A, 749757, doi:10.1111/j.1600-0870.2007.00246.x.

  • Snyder, C., T. Bengtsson, P. Bickel, and J. Anderson, 2008: Obstacles to high-dimensional particle filtering. Mon. Wea. Rev., 136, 46294640, doi:10.1175/2008MWR2529.1.

    • Search Google Scholar
    • Export Citation
  • Sondergaard, T., and P. F. J. Lermusiaux, 2013: Data assimilation with Gaussian mixture models using the dynamically orthogonal field equations. Part I: Theory and scheme. Mon. Wea. Rev., 141, 17371760, doi:10.1175/MWR-D-11-00295.1.

    • Search Google Scholar
    • Export Citation
  • Song, H., I. Hoteit, B. D. Cornuelle, and A. C. Subramanian, 2010: An adaptive approach to mitigate background covariance limitations in the ensemble Kalman filter. Mon. Wea. Rev., 138, 28252845, doi:10.1175/2010MWR2871.1.

    • Search Google Scholar
    • Export Citation
  • Sorenson, H., and D. Alspach, 1970: Gaussian sum approximations for nonlinear filtering. IEEE Symp. on Adaptive Processes (Ninth) Decision and Control, 1970, Vol. 9, Austin, TX, IEEE, 193–193.

  • Stordal, A. S., H. A. Karlsen, G. Nævdal, H. J. Skaug, and B. Vallès, 2011: Bridging the ensemble Kalman filter and particle filters: The adaptive Gaussian mixture filter. Comput. Geosci., 15, 293305, doi:10.1007/s10596-010-9207-1.

    • Search Google Scholar
    • Export Citation
  • Tagade, P., H. Seybold, and S. Ravela, 2014: Mixture ensembles for data assimilation in dynamic data-driven environmental systems. Proc. Comput. Sci., 29, 12661276, doi:10.1016/j.procs.2014.05.114.

    • Search Google Scholar
    • Export Citation
  • Tippett, M., J. Anderson, C. Bishop, T. Hamill, and J. Whitaker, 2003: Ensemble square root filters. Mon. Wea. Rev., 131, 14851490, doi:10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • van der Vaart, A. W., and J. A. Wellner, 1996: Weak Convergence and Empirical Processes: With Application to Statistics. Springer, 508 pp.

    • Search Google Scholar
    • Export Citation
  • van Leeuwen, P. J., 2009: Particle filtering in geophysical systems. Mon. Wea. Rev., 137, 40894114, doi:10.1175/2009MWR2835.1.

  • Whitaker, S., and D. Hirst, 2002: Correlational analysis of challenging behaviours. Br. J. Learn. Disabil., 30, 2831, doi:10.1046/j.1468-3156.2002.00081.x.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 648 189 20
PDF Downloads 309 121 13