• Ackerman, T. P., and G. M. Stokes, 2003: The Atmospheric Radiation Measurement Program. Phys. Today, 56, 3844, doi:10.1063/1.1554135.

    • Search Google Scholar
    • Export Citation
  • Anderson, N. F., C. A. Grainger, and J. L. Stith, 2005: Characteristics of strong updrafts in precipitation systems over the central tropical Pacific Ocean and in the Amazon. J. Appl. Meteor., 44, 731738, doi:10.1175/JAM2231.1.

    • Search Google Scholar
    • Export Citation
  • Aydin, K., and V. Giridhar, 1992: C-band dual-polarization radar observables in rain. J. Atmos. Oceanic Technol., 9, 383390, doi:10.1175/1520-0426(1992)009<0383:CBDPRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Aydin, K., Y. Zhao, and T. A. Seliga, 1989: Rain-induced attenuation effects on C-band dual-polarization meteorological radars. IEEE Trans. Geosci. Remote Sens., 27, 5766, doi:10.1109/36.20275.

    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor., 3, 396409, doi:10.1175/1520-0450(1964)003<0396:ATFMDI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Biggerstaff, M. I., and R. A. Houze, 1991: Kinematic and precipitation structure of the 10–11 June 1985 squall line. Mon. Wea. Rev., 119, 30343065, doi:10.1175/1520-0493(1991)119<3034:KAPSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Blossey, P. N., C. S. Bretherton, J. Cetrone, and M. Kharoutdinov, 2007: Cloud-resolving model simulations of KWAJEX: Model sensitivities and comparisons with satellite and radar observations. J. Atmos. Sci., 64, 14881508, doi:10.1175/JAS3982.1.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., M. T. Montgomery, K. J. Mallen, and P. D. Reasor, 2010: Simulation and interpretation of the genesis of Tropical Storm Gert (2005) as part of the NASA Tropical Cloud Systems and Processes experiment. J. Atmos. Sci., 67, 9991025, doi:10.1175/2009JAS3140.1.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications.Cambridge University Press, 664 pp.

  • Bringi, V. N., D. A. Burrows, and S. M. Menon, 1991: Multiparameter radar and aircraft study of raindrop spectral evolution in warm-based clouds. J. Appl. Meteor., 30, 853880, doi:10.1175/1520-0450(1991)030<0853:MRAASO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., L. Liu, P. C. Kennedy, V. Chandrasekar, and S. A. Rutledge, 1996: Dual multiparameter radar observations of intense convective storms: The 24 June 1992 case study. Meteor. Atmos. Phys., 59, 331, doi:10.1007/BF01031999.

    • Search Google Scholar
    • Export Citation
  • Bruning, E. C., W. D. Rust, T. J. Schuur, D. R. MacGorman, P. R. Krehbiel, and W. Rison, 2007: Electrical and polarimetric radar observations of a multicell storm in TELEX. Mon. Wea. Rev., 135, 25252544, doi:10.1175/MWR3421.1.

    • Search Google Scholar
    • Export Citation
  • Calhoun, K. M., D. R. MacGorman, C. L. Ziegler, and M. I. Biggerstaff, 2013: Evolution of lightning activity and storm charge relative to dual-Doppler analysis of a high-precipitation supercell storm. Mon. Wea. Rev., 141, 21992223, doi:10.1175/MWR-D-12-00258.1.

    • Search Google Scholar
    • Export Citation
  • Caniaux, G., J.-P. Lafore, and J.-L. Redelsperger, 1995: A numerical study of the stratiform region of a fast-moving squall line. Part II: Relationship between mass, pressure, and momentum fields. J. Atmos. Sci., 52, 331352, doi:10.1175/1520-0469(1995)052<0331:ANSOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., and S. A. Rutledge, 1998: Electrical and multiparameter radar observations of a severe hailstorm. J. Geophys. Res., 103, 13 97914 000, doi:10.1029/97JD02626.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., S. A. Rutledge, D. A. Ahijevych, and T. D. Keenan, 2000: Correcting propagation effects in C-band polarimetric radar observations of tropical convection using differential propagation phase. J. Appl. Meteor., 39, 14051433, doi:10.1175/1520-0450(2000)039<1405:CPEICB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cifelli, R., and V. Chandrasekar, 2010: Dual-polarization radar rainfall estimation. Rainfall: State of the Science, F. Y. Testik and M. Gebremichael, Eds., Amer. Geophys. Union, 105–125.

  • Collis, S., A. Protat, and K.-S. Chung, 2010: The effect of radial velocity gridding artifacts on variationally retrieved vertical velocities. J. Atmos. Oceanic Technol., 27, 12391246, doi:10.1175/2010JTECHA1402.1.

    • Search Google Scholar
    • Export Citation
  • Collis, S., A. Protat, P. T. May, and C. Williams, 2013: Statistics of storm updraft velocities from TWP-ICE including verification with profiling measurements. J. Appl. Meteor. Climatol., 52, 19091922, doi:10.1175/JAMC-D-12-0230.1.

    • Search Google Scholar
    • Export Citation
  • Deierling, W., and W. A. Petersen, 2008: Total lightning activity as an indicator of updraft characteristics. J. Geophys. Res., 113, D16210, doi:10.1029/2007JD009598.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnić, 1993: Doppler Radar and Weather Observations.Courier Dover Publications, 562 pp.

  • Fridlind, A. M., and Coauthors, 2012: A comparison of TWP-ICE observational data with cloud-resolving model results. J. Geophys. Res., 117, D05204, doi:10.1029/2011JD016595.

    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E., R. McGraw, and L. Lei, 2013: An application of linear programming to polarimetric radar differential phase processing. J. Atmos. Oceanic Technol., 30, 17161729, doi:10.1175/JTECH-D-12-00147.1.

    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E., S. Collis, A. K. Theisen, and A. Tokay, 2014: Precipitation estimation from the ARM distributed radar network during the MC3E campaign. J. Appl. Meteor. Climatol., 53, 21302147, doi:10.1175/JAMC-D-13-0321.1.

    • Search Google Scholar
    • Export Citation
  • Gray, M. E. B., 2000: Characteristics of numerically simulated mesoscale convective systems and their application to parameterization. J. Atmos. Sci., 57, 39533970, doi:10.1175/1520-0469(2001)058<3953:CONSMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Griffin, E. M., T. J. Schuur, D. R. MacGorman, M. R. Kumjian, and A. O. Fierro, 2014: An electrical and polarimetric analysis of the overland reintensification of Tropical Storm Erin (2007). Mon. Wea. Rev., 142, 23212344, doi:10.1175/MWR-D-13-00360.1.

    • Search Google Scholar
    • Export Citation
  • Heistermann, M., and Coauthors, 2015: The emergence of open-source software for the weather radar community. Bull. Amer. Meteor. Soc., 96, 117–128, doi:10.1175/BAMS-D-13-00240.1.

  • Heymsfield, A. J., A. Bansemer, P. R. Field, S. L. Durden, J. L. Stith, J. E. Dye, W. Hall, and C. A. Grainger, 2002: Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59, 34573491, doi:10.1175/1520-0469(2002)059<3457:OAPOPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., and M. R. Kumjian, 2015: Microphysical characteristics of overshooting convection from polarimetric radar observations. J. Atmos. Sci., 72, 870891, doi:10.1175/JAS-D-13-0388.1.

    • Search Google Scholar
    • Export Citation
  • Hubbert, J., V. N. Bringi, L. D. Carey, and S. Bolan, 1998: CSU-CHILL polarimetric radar measurements from a severe hail storm in eastern Colorado. J. Appl. Meteor., 37, 749775, doi:10.1175/1520-0450(1998)037<0749:CCPRMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hubbert, J., S. M. Ellis, W.-Y. Chang, and Y.-C. Liou, 2014: X-band polarimetric observations of cross coupling in the ice phase of convective storms in Taiwan. J. Appl. Meteor. Climatol., 53, 16781695, doi:10.1175/JAMC-D-13-0360.1.

    • Search Google Scholar
    • Export Citation
  • Jayaratne, E., C. Saunders, and J. Hallett, 1983: Laboratory studies of the charging of soft-hail during ice crystal interactions. Quart. J. Roy. Meteor. Soc., 109, 609630, doi:10.1002/qj.49710946111.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013: Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. J. Oper. Meteor., 1, 226242, doi:10.15191/nwajom.2013.0119.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2009: Storm-relative helicity revealed from polarimetric radar measurements. J. Atmos. Sci., 66, 667685, doi:10.1175/2008JAS2815.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., A. P. Khain, N. Benmoshe, E. Ilotoviz, A. V. Ryzhkov, and V. T. J. Phillips, 2014a: The anatomy and physics of columns: Investigating a polarimetric radar signature with a spectral bin microphysics model. J. Appl. Meteor. Climatol., 53, 18201843, doi:10.1175/JAMC-D-13-0354.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., S. A. Rutledge, R. M. Rasmussen, P. C. Kennedy, and M. Dixon, 2014b: High-resolution polarimetric radar observations of snow-generating cells. J. Appl. Meteor. Climatol., 53, 1636–1658, doi:10.1175/JAMC-D-13-0312.1.

  • Lang, S., W.-K. Tao, J. Simpson, and B. Ferrier, 2003: Modeling of convective–stratiform precipitation processes: Sensitivity to partitioning methods. J. Appl. Meteor., 42, 505527, doi:10.1175/1520-0450(2003)042<0505:MOCSPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lang, S., W.-K. Tao, X. Zeng, and Y. Li, 2011: Reducing the biases in simulated radar reflectivities from a bulk microphysics scheme: Tropical convective systems. J. Atmos. Sci., 68, 23062320, doi:10.1175/JAS-D-10-05000.1.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., and S. A. Rutledge, 2002: Relationships between convective storm kinematics, precipitation, and lightning. Mon. Wea. Rev., 130, 24922506, doi:10.1175/1520-0493(2002)130<2492:RBCSKP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., E. Jensen, D. L. Mitchell, B. Baker, Q. Mo, and B. Pilson, 2010: Microphysical and radiative properties of tropical clouds investigated in TC4 and NAMMA. J. Geophys. Res., 115, D00J08, doi:10.1029/2009JD013017.

    • Search Google Scholar
    • Export Citation
  • Levin, Z., and W. R. Cotton, Eds., 2008: Aerosol Pollution Impact on Precipitation: A Scientific Review.Springer, 386 pp.

  • Loney, M. L., D. S. Zrnić, J. M. Straka, and A. V. Ryzhkov, 2002: Enhanced polarimetric radar signatures above the melting level in a supercell storm. J. Appl. Meteor., 41, 11791194, doi:10.1175/1520-0450(2002)041<1179:EPRSAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lund, N. R., D. R. MacGorman, T. J. Schuur, M. I. Biggerstaff, and W. D. Rust, 2009: Relationships between lightning location and polarimetric radar signatures in a small mesoscale convective system. Mon. Wea. Rev., 137, 41514170, doi:10.1175/2009MWR2860.1.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and Coauthors, 2008: TELEX: The Thunderstorm Electrification and Lightning Experiment. Bull. Amer. Meteor. Soc., 89, 9971013, doi:10.1175/2007BAMS2352.1.

    • Search Google Scholar
    • Export Citation
  • Mather, J. H., and J. W. Voyles, 2013: The ARM Climate Research Facility: A review of structure and capabilities. Bull. Amer. Meteor. Soc., 94, 377–392, doi:10.1175/BAMS-D-11-00218.1.

    • Search Google Scholar
    • Export Citation
  • Matsui, T., X. Zeng, W.-K. Tao, H. Masunaga, W. S. Olson, and S. Lang, 2009: Evaluation of long-term cloud-resolving model simulations using satellite radiance observations and multi-frequency satellite simulators. J. Atmos. Oceanic Technol., 26, 12611274, doi:10.1175/2008JTECHA1168.1.

    • Search Google Scholar
    • Export Citation
  • Matsui, T., W.-K. Tao, S. J. Munchak, M. Grecu, and G. J. Huffman, 2015: Satellite view of quasi-equilibrium states in tropical convection and precipitation microphysics. Geophys. Res. Lett., 42, 19591968, doi:10.1002/2015GL063261.

    • Search Google Scholar
    • Export Citation
  • Mechem, D. B., S. S. Chen, and R. A. Houze, 2006: Momentum transport processes in the stratiform regions of mesoscale convective systems over the western Pacific warm pool. Quart. J. Roy. Meteor. Soc., 132, 709736, doi:10.1256/qj.04.141.

    • Search Google Scholar
    • Export Citation
  • Mrowiec, A. A., O. M. Pauluis, A. M. Fridlind, and A. S. Ackerman, 2015: Properties of a mesoscale convective system in the context of an isentropic analysis. J. Atmos. Sci., 72, 19451962, doi:10.1175/JAS-D-14-0139.1.

    • Search Google Scholar
    • Export Citation
  • North, K. W., 2016: Kinematic retrievals in deep convective clouds from a network of scanning Doppler radars in Oklahoma during MC3E. M.S. thesis, McGill University, Montreal, Quebec, Canada.

  • Parker, M. D., and R. H. Johnson, 2000: Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev., 128, 34133436, doi:10.1175/1520-0493(2001)129<3413:OMOMMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Payne, C. D., T. J. Schuur, D. R. MacGorman, M. I. Biggerstaff, K. M. Kuhlman, and W. D. Rust, 2010: Polarimetric and electrical characteristics of a lightning ring in a supercell storm. Mon. Wea. Rev., 138, 24052425, doi:10.1175/2009MWR3210.1.

    • Search Google Scholar
    • Export Citation
  • Pereyra, R. G., E. E. Avila, N. E. Castellano, and C. P. Saunders, 2000: A laboratory study of graupel charging. J. Geophys. Res., 105, 20 80320 812, doi:10.1029/2000JD900244.

    • Search Google Scholar
    • Export Citation
  • Reynolds, S., M. Brook, and M. F. Gourley, 1957: Thunderstorm charge separation. J. Meteor., 14, 426436, doi:10.1175/1520-0469(1957)014<0426:TCS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roerdink, J. B. T. M., and A. Meijster, 2001: The watershed transform: Definitions, algorithms and parallelization strategies. Fundamenta Informaticae, 41, 187228.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., 2007: The impact of beam broadening on the quality of radar polarimetric data. J. Atmos. Oceanic Technol., 24, 729744, doi:10.1175/JTECH2003.1.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., and D. S. Zrnić, 1996: Assessment of rainfall measurement that uses specific differential phase. J. Appl. Meteor., 35, 20802090, doi:10.1175/1520-0450(1996)035<2080:AORMTU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. Diederich, P. Zhang, and C. Simmer, 2014: Potential utilization of specific attenuation for rainfall estimation, mitigation of partial beam blockage, and radar networking. J. Atmos. Oceanic Technol., 31, 599619, doi:10.1175/JTECH-D-13-00038.1.

    • Search Google Scholar
    • Export Citation
  • Sachidananda, M., and D. S. Zrnić, 1986: Differential propagation phase shift and rainfall rate estimation. Radio Sci., 21, 235247, doi:10.1029/RS021i002p00235.

    • Search Google Scholar
    • Export Citation
  • Shi, J. J., and Coauthors, 2010: WRF simulations of the 20–22 January 2007 snow events over eastern Canada: Comparison with in situ and satellite observations. J. Appl. Meteor. Climatol., 49, 22462266, doi:10.1175/2010JAMC2282.1.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., and J. A. Smith, 1998: Convective versus stratiform rainfall: An ice-microphysical and kinematic conceptual model. Atmos. Res., 47–48, 317326, doi:10.1016/S0169-8095(97)00086-0.

    • Search Google Scholar
    • Export Citation
  • Stith, J. L., J. E. Dye, A. Bansemer, A. J. Heymsfield, C. A. Grainger, W. A. Petersen, and R. Cifelli, 2002: Microphysical observations of tropical clouds. J. Appl. Meteor., 41, 97117, doi:10.1175/1520-0450(2002)041<0097:MOOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stith, J. L., J. A. Haggerty, A. Heymsfield, and C. A. Grainger, 2004: Microphysical characteristics of tropical updrafts in clean conditions. J. Appl. Meteor., 43, 779794, doi:10.1175/2104.1.

    • Search Google Scholar
    • Export Citation
  • Stith, J. L., J. A. Haggerty, C. Grainger, and A. Detwiler, 2006: A comparison of the microphysical and kinematic characteristics of mid-latitude and tropical convective updrafts and downdrafts. Atmos. Res., 82 (1–2), 350366, doi:10.1016/j.atmosres.2005.12.008.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35, 15361548, doi:10.1175/1520-0469(1978)035<1536:REAACG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., J.-P. Chen, Z. Li, C. Wang, and C. Zhang, 2012: Impact of aerosols on convective clouds and precipitation. Rev. Geophys., 50, RG2001, doi:10.1029/2011RG000369.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and Coauthors, 2014: The Goddard Cumulus Ensemble model (GCE): Improvements and applications for studying precipitation processes. Atmos. Res., 143, 392424, doi:10.1016/j.atmosres.2014.03.005.

    • Search Google Scholar
    • Export Citation
  • Tessendorf, S. A., L. J. Miller, K. C. Wiens, and S. A. Rutledge, 2005: The 29 June 2000 supercell observed during STEPS. Part I: Kinematics and microphysics. J. Atmos. Sci., 62, 41274150, doi:10.1175/JAS3585.1.

    • Search Google Scholar
    • Export Citation
  • Tessendorf, S. A., S. A. Rutledge, and K. C. Wiens, 2007a: Radar and lighting observations of normal and inverted polarity multicellular storms from steps. Mon. Wea. Rev., 135, 36823706, doi:10.1175/2007MWR1954.1.

    • Search Google Scholar
    • Export Citation
  • Tessendorf, S. A., K. C. Wiens, and S. A. Rutledge, 2007b: Radar and lighting observations of the 3 June 2000 electrically inverted storm from STEPS. Mon. Wea. Rev., 135, 36653681, doi:10.1175/2006MWR1953.1.

    • Search Google Scholar
    • Export Citation
  • Thomas, R. J., P. R. Krehbiel, W. Rison, S. J. Hunyady, W. P. Winn, T. Hamlin, and J. Harlin, 2004: Accuracy of the lightning mapping array. J. Geophys. Res., 109, D14207, doi:10.1029/2004JD004549.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., and C. A. Doswell III, 2000: Radar data objective analysis. J. Atmos. Oceanic Technol., 17, 105120, doi:10.1175/1520-0426(2000)017<0105:RDOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Varble, A., and Coauthors, 2011: Evaluation of cloud-resolving model intercomparison simulations using TWP-ICE observations: Precipitation and cloud structure. J. Geophys. Res., 116, D12206, doi:10.1029/2010JD015180.

    • Search Google Scholar
    • Export Citation
  • Varble, A., and Coauthors, 2014a: Evaluation of cloud-resolving and limited area model intercomparison simulations using TWP-ICE observations: 1. Deep convective updraft properties. J. Geophys. Res. Atmos., 119, 13 89113 918, doi:10.1002/2013JD021371.

    • Search Google Scholar
    • Export Citation
  • Varble, A., and Coauthors, 2014b: Evaluation of cloud-resolving and limited area model intercomparison simulations using TWP-ICE observations: 2. Precipitation microphysics. J. Geophys. Res. Atmos., 119, 13 919–13 945, doi:10.1002/2013JD021372.

  • Wiens, K. C., S. A. Rutledge, and S. A. Tessendorf, 2005: The 29 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure. J. Atmos. Sci., 62, 41514177, doi:10.1175/JAS3615.1.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., W.-K. Tao, S. W. Powell, R. A. Houze, P. Ciesielski, N. Guy, H. Pierce, and T. Matsui, 2013: A comparison of the water budgets between clouds from AMMA and TWP-ICE. J. Atmos. Sci., 70, 487503, doi:10.1175/JAS-D-12-050.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, P., and Coauthors, 2012: A limited area model (LAM) intercomparison study of a TWP-ICE active monsoon mesoscale convective event. J. Geophys. Res., 117, D11208, doi:10.1029/2011JD016447.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., and A. V. Ryzhkov, 1999: Polarimetry for weather surveillance radars. Bull. Amer. Meteor. Soc., 80, 389406, doi:10.1175/1520-0477(1999)080<0389:PFWSR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 740 504 20
PDF Downloads 492 328 22

On Polarimetric Radar Signatures of Deep Convection for Model Evaluation: Columns of Specific Differential Phase Observed during MC3E

View More View Less
  • 1 CCSR, Columbia University, New York, New York
  • | 2 NASA Goddard Institute for Space Studies, New York, New York
  • | 3 Environmental Sciences Division, Argonne National Laboratory, Argonne, Illinois
  • | 4 NOAA/National Severe Storms Laboratory, Norman, Oklahoma
  • | 5 ** Cooperative Institute for Mesoscale Meteorological Studies, Norman, Oklahoma
  • | 6 McGill University, Montreal, Quebec, Canada
  • | 7 University of Michigan, Ann Arbor, Michigan
Restricted access

Abstract

The representation of deep convection in general circulation models is in part informed by cloud-resolving models (CRMs) that function at higher spatial and temporal resolution; however, recent studies have shown that CRMs often fail at capturing the details of deep convection updrafts. With the goal of providing constraint on CRM simulation of deep convection updrafts, ground-based remote sensing observations are analyzed and statistically correlated for four deep convection events observed during the Midlatitude Continental Convective Clouds Experiment (MC3E). Since positive values of specific differential phase observed above the melting level are associated with deep convection updraft cells, so-called columns are analyzed using two scanning polarimetric radars in Oklahoma: the National Weather Service Vance WSR-88D (KVNX) and the Department of Energy C-band Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar (C-SAPR). KVNX and C-SAPR volumes and columns are then statistically correlated with vertical winds retrieved via multi-Doppler wind analysis, lightning flash activity derived from the Oklahoma Lightning Mapping Array, and KVNX differential reflectivity . Results indicate strong correlations of volume above the melting level with updraft mass flux, lightning flash activity, and intense rainfall. Analysis of columns reveals signatures of changing updraft properties from one storm event to another as well as during event evolution. Comparison of to shows commonalities in information content of each, as well as potential problems with associated with observational artifacts.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/MWR-D-15-0100.s1.

Corresponding author address: Marcus van Lier-Walqui, CCSR, Columbia University, 2880 Broadway, New York, NY 10027. E-mail: marcus.vanlier-walqui@nasa.gov

Abstract

The representation of deep convection in general circulation models is in part informed by cloud-resolving models (CRMs) that function at higher spatial and temporal resolution; however, recent studies have shown that CRMs often fail at capturing the details of deep convection updrafts. With the goal of providing constraint on CRM simulation of deep convection updrafts, ground-based remote sensing observations are analyzed and statistically correlated for four deep convection events observed during the Midlatitude Continental Convective Clouds Experiment (MC3E). Since positive values of specific differential phase observed above the melting level are associated with deep convection updraft cells, so-called columns are analyzed using two scanning polarimetric radars in Oklahoma: the National Weather Service Vance WSR-88D (KVNX) and the Department of Energy C-band Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar (C-SAPR). KVNX and C-SAPR volumes and columns are then statistically correlated with vertical winds retrieved via multi-Doppler wind analysis, lightning flash activity derived from the Oklahoma Lightning Mapping Array, and KVNX differential reflectivity . Results indicate strong correlations of volume above the melting level with updraft mass flux, lightning flash activity, and intense rainfall. Analysis of columns reveals signatures of changing updraft properties from one storm event to another as well as during event evolution. Comparison of to shows commonalities in information content of each, as well as potential problems with associated with observational artifacts.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/MWR-D-15-0100.s1.

Corresponding author address: Marcus van Lier-Walqui, CCSR, Columbia University, 2880 Broadway, New York, NY 10027. E-mail: marcus.vanlier-walqui@nasa.gov

Supplementary Materials

    • Supplemental Materials (PDF 1.73 MB)
Save