• Albrecht, B. A., A. K. Betts, W. H. Schubert, and S. K. Cox, 1979: Model of the thermodynamic structure of trade wind boundary layer: Part I. Theoretical formulation and sensitivity studies. J. Atmos. Sci., 36, 7389, doi:10.1175/1520-0469(1979)036<0073:MOTTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., 2004: The cumulus parameterization problem: Past, present, and future. J. Climate, 17, 24932525, doi:10.1175/1520-0442(2004)017<2493:RATCPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Augstein, E., H. Riehl, F. Ostapoff, and V. Wagner, 1973: Mass and energy transports in an undisturbed Atlantic trade-wind flow. Mon. Wea. Rev., 101, 101111, doi:10.1175/1520-0493(1973)101<0101:MAETIA>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Augstein, E., H. Schmidt, and F. Ostapoff, 1974: The vertical structure of the atmospheric planetary boundary layer in undisturbed trade winds over the Atlantic Ocean. Bound.-Layer Meteor., 6, 129150, doi:10.1007/BF00232480.

    • Search Google Scholar
    • Export Citation
  • Berg, L. K., W. I. Gustafson Jr., E. I. Kassianov, and L. Deng, 2013: Evaluation of a modified scheme for shallow convection: Implementation of CuP and case studies. Mon. Wea. Rev., 141, 134147, doi:10.1175/MWR-D-12-00136.1.

    • Search Google Scholar
    • Export Citation
  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 10461053, doi:10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and S. Park, 2008: A new bulk shallow-cumulus model and implications for penetrative entrainment feedback on updraft buoyancy. J. Atmos. Sci., 65, 21742193, doi:10.1175/2007JAS2242.1.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., J. R. McCaa, and H. Grenier, 2004: A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part I: Description and 1D results. Mon. Wea. Rev., 132, 864882, doi:10.1175/1520-0493(2004)132<0864:ANPFSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chandra, A. S., P. Kollias, and B. A. Albrecht, 2013: Multiyear summertime observations of daytime fair-weather cumuli at the ARM Southern Great Plains Facility. J. Climate, 26, 10 03110 050, doi:10.1175/JCLI-D-12-00223.1.

    • Search Google Scholar
    • Export Citation
  • Clothiaux, E. E., T. P. Ackerman, G. G. Mace, K. P. Moran, R. T. Marchand, M. A. Miller, and B. E. Martner, 2000: Objective determination of cloud heights and radar reflectivities using a combination of active remote sensors at the ARM CART sites. J. Appl. Meteor., 39, 645665, doi:10.1175/1520-0450(2000)039<0645:ODOCHA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Comstock, J. M., A. Protat, S. A. McFarlane, J. Delanoë, and M. Deng, 2013: Assessment of uncertainty in cloud radiative effects and heating rates through retrieval algorithm differences: Analysis using 3 years of ARM data at Darwin, Australia. J. Geophys. Res. Atmos., 118, 45494571, doi:10.1002/jgrd.50404.

    • Search Google Scholar
    • Export Citation
  • Davidson, B., 1968: The Barbados Oceanographic and Meteorological Experiment. Bull. Amer. Meteor. Soc., 49, 928934.

  • Eastman, R., and S. G. Warren, 2013: A 39-yr survey of cloud changes from land stations worldwide 1971–2009: Long-term trends, relation to aerosols, and expansion of the tropical belt. J. Climate, 26, 12861303, doi:10.1175/JCLI-D-12-00280.1.

    • Search Google Scholar
    • Export Citation
  • Eastman, R., and S. G. Warren, 2014: Diurnal cycles of cumulus, cumulonimbus, stratus, stratocumulus, and fog from surface observations over land and ocean. J. Climate, 27, 23862404, doi:10.1175/JCLI-D-13-00352.1.

    • Search Google Scholar
    • Export Citation
  • ECMWF, 1994: The description of the ECMWF/WCRP level III-A global atmospheric data archive. ECMWF Rep. 00211, 48 pp. [Available online at http://cedadocs.badc.rl.ac.uk/1109/1/The_description_of_the_ECMWF-WCRP_Level_3-A_global_atmospheric_data_archive.pdf.]

  • Ghate, V. P., M. A. Miller, and L. DiPretore, 2011: Vertical velocity structure of marine boundary layer trade wind cumulus clouds. J. Geophys. Res., 116, D16206, doi:10.1029/2010JD015344.

    • Search Google Scholar
    • Export Citation
  • Ghate, V. P., M. A. Miller, B. A. Albrecht, and C. W. Fairall, 2015: Thermodynamic and radiative structure of stratocumulus-topped boundary layers. J. Atmos. Sci., 72, 430451, doi:10.1175/JAS-D-13-0313.1.

    • Search Google Scholar
    • Export Citation
  • Golaz, J.-C., V. E. Larson, and W. R. Cotton, 2002: A PDF-based model for boundary layer clouds. Part I: Method and model description. J. Atmos. Sci., 59, 35403551, doi:10.1175/1520-0469(2002)059<3540:APBMFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Golaz, J.-C., S. Wang, J. D. Doyle, and J. M. Schmidt, 2005: COAMPS-Les: Model evaluation and analysis of second-and third-moment vertical velocity budgets. Bound.-Layer Meteor., 116, 487517, doi:10.1007/s10546-004-7300-5.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., E. J. Mlawer, S. A. Clough, and J.-J. Morcrette, 2000: Impact of an improved longwave radiation model, RRTM on the energy budget and thermodynamic properties of the NCAR Community Climate Model, CCM3. J. Geophys. Res., 105, 14 87314 890, doi:10.1029/2000JD900091.

    • Search Google Scholar
    • Export Citation
  • Ivanova, D. D., L. Mitchell, W. P. Arnott, and M. Poellot, 2001: A GCM parameterization for bimodal size spectra and ice mass removal rates in mid-latitude cirrus clouds. Atmos. Res., 59–60, 89113, doi:10.1016/S0169-8095(01)00111-9.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437470, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., Y. Zhang, M. D. Zelinka, R. Pincus, J. Boyle, and P. J. Gleckler, 2013: Are climate model simulations of clouds improving? An evaluation using the ISCCP simulator. J. Geophys. Res. Atmos., 118, 13291342, doi:10.1002/jgrd.50141.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., and B. Albrecht, 2010: Vertical velocity statistics in fair-weather cumuli at the ARM TWP Nauru Climate Research Facility. J. Climate, 23, 65906604, doi:10.1175/2010JCLI3449.1.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., M. A. Miller, E. P. Luke, K. L. Johnson, E. E. Clothiaux, K. P. Moran, K. B. Widener, and B. A. Albrecht, 2007: The Atmospheric Radiation Measurement program cloud profiling radars: Second-generation sampling strategies, processing, and cloud data products. J. Atmos. Oceanic Technol., 24, 11991214, doi:10.1175/JTECH2033.1.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., M. A. Miller, K. L. Johnson, M. P. Jensen, and D. T. Troyan, 2009: Cloud, thermodynamic, and precipitation observations in West Africa during 2006. J. Geophys. Res., 114, D00E08, doi:10.1029/2008JD010641.

    • Search Google Scholar
    • Export Citation
  • Lappen, C.-L., D. Randall, and T. Yamaguchi, 2010: A higher-order closure model with an explicit PBL top. J. Atmos. Sci., 67, 834850, doi:10.1175/2009JAS3205.1.

    • Search Google Scholar
    • Export Citation
  • Larson, V. E., D. P. Schanen, M. Wang, M. Ovchinnikov, and S. Ghan, 2012: PDF parameterization of boundary layer clouds in models with horizontal grid spacings from 2 to 16 km. Mon. Wea. Rev., 140, 285306, doi:10.1175/MWR-D-10-05059.1.

    • Search Google Scholar
    • Export Citation
  • Li, Z., P. Zuidema, and P. Zhu, 2014: Simulated convective invigoration processes at trade wind cumulus cold pool boundaries. J. Atmos. Sci., 71, 28232841, doi:10.1175/JAS-D-13-0184.1.

    • Search Google Scholar
    • Export Citation
  • Liu, C. L., and A. J. Illingworth, 2000: Toward more accurate retrievals of ice water content from radar measurements of clouds. J. Appl. Meteor., 39, 11301146, doi:10.1175/1520-0450(2000)039<1130:TMAROI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Mon. Wea. Rev., 128, 31873199, doi:10.1175/1520-0493(2000)128<3187:ANBLMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Long, C. N., and Coauthors, 2013: ARM research in the equatorial western Pacific: A decade and counting. Bull. Amer. Meteor. Soc., 94, 695708, doi:10.1175/BAMS-D-11-00137.1.

    • Search Google Scholar
    • Export Citation
  • Mather, J. H., and J. W. Voyles, 2013: The ARM Climate Research Facility: A review of structure and capabilities. Bull. Amer. Meteor. Soc., 94, 377392, doi:10.1175/BAMS-D-11-00218.1.

    • Search Google Scholar
    • Export Citation
  • Mather, J. H., S. A. McFarlane, M. A. Miller, and K. L. Johnson, 2007: Cloud properties and associated radiative heating rates in the tropical western Pacific. J. Geophys. Res., 112, D05201, doi:10.1029/2006JD007555.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., T. Uttal, and D. A. Hazen, 2004: Evaluation of radar reflectivity–based estimates of water content in stratiform marine clouds. J. Appl. Meteor., 43, 405419, doi:10.1175/1520-0450(2004)043<0405:EORREO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Miles, N. L., J. Verlinde, and E. E. Clothiaux, 2000: Cloud droplet size distributions in low-level stratiform clouds. J. Atmos. Sci., 57, 295311, doi:10.1175/1520-0469(2000)057<0295:CDSDIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Morcrette, J.-J., E. J. Mlawer, M. J. Iacono, and S. A. Clough, 2001: Impact of the radiation-transfer scheme RRTM in the ECMWF forecasting system, ECMWF Newsletter, No. 91, ECMWF, Reading, United Kingdom, 2–9. [Available online at http://www.ecmwf.int/sites/default/files/elibrary/2001/14633-newsletter-no91-summer-2001.pdf.]

  • Nam, C., S. Bony, J.-L. Dufresne, and H. Chepfer, 2012: The ‘too few, too bright’ tropical low-cloud problem in CMIP5 models. Geophys. Res. Lett., 39, L21801, doi:10.1029/2012GL053421.

    • Search Google Scholar
    • Export Citation
  • Neggers, R., J. D. Neelin, and B. Stevens, 2007: Impact mechanisms of shallow cumulus convection on tropical climate dynamics. J. Climate, 20, 26232642, doi:10.1175/JCLI4079.1.

    • Search Google Scholar
    • Export Citation
  • Nuijens, L., and B. Stevens, 2012: The influence of wind speed on shallow marine cumulus convection. J. Atmos. Sci., 69, 168184, doi:10.1175/JAS-D-11-02.1.

    • Search Google Scholar
    • Export Citation
  • Nuijens, L., I. Serikov, L. Hirsch, K. Lonitz, and B. Stevens, 2014: The distribution and variability of low-level cloud in the North-Atlantic trades. Quart. J. Roy. Meteor. Soc., 140, 23642374, doi:10.1002/qj.2307.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and Coauthors, 2007: Rain in shallow cumulus over the ocean: The RICO campaign. Bull. Amer. Meteor. Soc., 88, 19121928, doi:10.1175/BAMS-88-12-1912.

    • Search Google Scholar
    • Export Citation
  • Rémillard, J., P. Kollias, E. Luke, and R. Wood, 2012: Marine boundary layer cloud observations in the Azores. J. Climate, 25, 73817398, doi:10.1175/JCLI-D-11-00610.1.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and Coauthors, 2003: A large eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci., 60, 12011219, doi:10.1175/1520-0469(2003)60<1201:ALESIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2001: Simulations of trade wind cumuli under a strong inversion. J. Atmos. Sci., 58, 18701891, doi:10.1175/1520-0469(2001)058<1870:SOTWCU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1985: A fair-weather cumulus cloud classification scheme for mixed-layer studies. J. Climate Appl. Meteor., 24, 4956, doi:10.1175/1520-0450(1985)024<0049:AFWCCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988:An Introduction to Boundary Layer Meteorology. Springer, 670 pp.

  • Troyan, D., 2012: Merged sounding value-added product. DOE/ARM Tech. Rep. DOE/SC-ARM/TR-087, 13 pp. [Available online at https://www.arm.gov/publications/tech_reports/doe-sc-arm-tr-087.pdf.]

  • vanZanten, M. C., and Coauthors, 2011: Controls on precipitation and cloudiness in simulations of trade-wind cumulus as observed during RICO. J. Adv. Model. Earth Syst., 3, M06001, doi:10.1029/2011MS000056.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and B. Geerts, 2013: Composite vertical structure of vertical velocity in nonprecipitating cumulus clouds. Mon. Wea. Rev., 141, 16731692, doi:10.1175/MWR-D-12-00047.1.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and Coauthors, 2015: Clouds, aerosols, and precipitation in the marine boundary layer: An ARM Mobile Facility deployment. Bull. Amer. Meteor. Soc., 96, 419440, doi:10.1175/BAMS-D-13-00180.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and S. A. Klein, 2013: Factors controlling the vertical extent of fair-weather shallow cumulus clouds over land: investigation of diurnal-cycle observations collected at the ARM Southern Great Plains site. J. Atmos. Sci., 70, 12971315, doi:10.1175/JAS-D-12-0131.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 442 347 20
PDF Downloads 100 44 1

Differences between Nonprecipitating Tropical and Trade Wind Marine Shallow Cumuli

View More View Less
  • 1 Environmental Science Division, Argonne National Laboratory, Argonne, Illinois
  • | 2 Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
  • | 3 Department of Earth Sciences, Florida International University, University Park, Florida
Restricted access

Abstract

Marine nonprecipitating cumulus topped boundary layers (CTBLs) observed in a tropical and in a trade wind region are contrasted based on their cloud macrophysical, dynamical, and radiative structures. Data from the Atmospheric Radiation Measurement (ARM) observational site previously operating at Manus Island, Papua New Guinea, and data collected during the deployment of ARM Mobile Facility at the island of Graciosa, in the Azores, were used in this study. The tropical marine CTBLs were deeper, had higher surface fluxes and boundary layer radiative cooling, but lower wind speeds compared to their trade wind counterparts. The radiative velocity scale was 50%–70% of the surface convective velocity scale at both locations, highlighting the prominent role played by radiation in maintaining turbulence in marine CTBLs. Despite greater thicknesses, the chord lengths of tropical cumuli were on average lower than those of trade wind cumuli, and as a result of lower cloud cover, the hourly averaged (cloudy and clear) liquid water paths of tropical cumuli were lower than the trade wind cumuli. At both locations ~70% of the cloudy profiles were updrafts, while the average amount of updrafts near cloud base stronger than 1 m s−1 was ~22% in tropical cumuli and ~12% in the trade wind cumuli. The mean in-cloud radar reflectivity within updrafts and mean updraft velocity was higher in tropical cumuli than the trade wind cumuli. Despite stronger vertical velocities and a higher number of strong updrafts, due to lower cloud fraction, the updraft mass flux was lower in the tropical cumuli compared to the trade wind cumuli. The observations suggest that the tropical and trade wind marine cumulus clouds differ significantly in their macrophysical and dynamical structures.

Corresponding author address: Virendra P. Ghate, Environmental Science Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439. E-mail: vghate@anl.gov

Abstract

Marine nonprecipitating cumulus topped boundary layers (CTBLs) observed in a tropical and in a trade wind region are contrasted based on their cloud macrophysical, dynamical, and radiative structures. Data from the Atmospheric Radiation Measurement (ARM) observational site previously operating at Manus Island, Papua New Guinea, and data collected during the deployment of ARM Mobile Facility at the island of Graciosa, in the Azores, were used in this study. The tropical marine CTBLs were deeper, had higher surface fluxes and boundary layer radiative cooling, but lower wind speeds compared to their trade wind counterparts. The radiative velocity scale was 50%–70% of the surface convective velocity scale at both locations, highlighting the prominent role played by radiation in maintaining turbulence in marine CTBLs. Despite greater thicknesses, the chord lengths of tropical cumuli were on average lower than those of trade wind cumuli, and as a result of lower cloud cover, the hourly averaged (cloudy and clear) liquid water paths of tropical cumuli were lower than the trade wind cumuli. At both locations ~70% of the cloudy profiles were updrafts, while the average amount of updrafts near cloud base stronger than 1 m s−1 was ~22% in tropical cumuli and ~12% in the trade wind cumuli. The mean in-cloud radar reflectivity within updrafts and mean updraft velocity was higher in tropical cumuli than the trade wind cumuli. Despite stronger vertical velocities and a higher number of strong updrafts, due to lower cloud fraction, the updraft mass flux was lower in the tropical cumuli compared to the trade wind cumuli. The observations suggest that the tropical and trade wind marine cumulus clouds differ significantly in their macrophysical and dynamical structures.

Corresponding author address: Virendra P. Ghate, Environmental Science Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439. E-mail: vghate@anl.gov
Save