• Anderson, J., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Arellano, 2009: The Data Assimilation Research Testbed: A community data assimilation facility. Bull. Amer. Meteor. Soc., 90, 12831296, doi:10.1175/2009BAMS2618.1.

    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., and Coauthors, 2008: The COSMIC/FORMOSAT-3 mission: Early results. Bull. Amer. Meteor. Soc., 89, 313333, doi:10.1175/BAMS-89-3-313.

    • Search Google Scholar
    • Export Citation
  • Ballish, B. A., and V. K. Kumar, 2008: Systematic differences in aircraft and radiosonde temperatures. Bull. Amer. Meteor. Soc., 89, 16891707, doi:10.1175/2008BAMS2332.1.

    • Search Google Scholar
    • Export Citation
  • Barker, D. M., W. Huang, R.-R. Guo, A. J. Bourgeois, and Q. N. Xiao, 2004: A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev., 132, 897914, doi:10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., E. Klinker, A. K. Betts, and J. A. Coakley Jr., 1995: Comparison of ceilometer, satellite, and synoptic measurements of boundary-layer cloudiness and the ECMWF diagnostic cloud parameterization scheme during ASTEX. J. Atmos. Sci., 52, 27362751, doi:10.1175/1520-0469(1995)052<2736:COCSAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bullock, O. R. J., K. Alapaty, J. A. Herwehe, and J. S. Kain, 2015: A dynamically computed convective time scale for the Kain–Fritsch convective parameterization scheme. Mon. Wea. Rev., 143, 21052120, doi:10.1175/MWR-D-14-00251.1.

    • Search Google Scholar
    • Export Citation
  • Cavallo, S. M., J. Dudhia, and C. Snyder, 2011: A multilayer upper-boundary condition for longwave radiative flux to correct temperature biases in a mesoscale model. Mon. Wea. Rev., 139, 19521959, doi:10.1175/2010MWR3513.1.

    • Search Google Scholar
    • Export Citation
  • Cavallo, S. M., R. T. Torn, C. Snyder, C. Davis, W. Wang, and J. Done, 2013: Evaluation of the Advanced Hurricane WRF data assimilation system for the 2009 Atlantic hurricane season. Mon. Wea. Rev., 141, 523541, doi:10.1175/MWR-D-12-00139.1.

    • Search Google Scholar
    • Export Citation
  • Chou, M.-D. C., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. 104606, Vol. 3, NASA, 85 pp.

  • Davis, C. A., and Coauthors, 2008: Prediction of landfalling hurricanes with the Advanced Hurricane WRF Model. Mon. Wea. Rev., 136, 19902005, doi:10.1175/2007MWR2085.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., W. Wang, J. Dudhia, and R. Torn, 2010: Does increased horizontal resolution improve hurricane wind forecasts? Wea. Forecasting, 25, 18261841, doi:10.1175/2010WAF2222423.1.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1996: A multi-layer soil temperature model for MM5. Preprints, Sixth PSU/NCAR Mesoscale Model Users’ Workshop, Boulder, CO, NCAR, 49–50. [Available online at http://www2.mmm.ucar.edu/wrf/users/phys_refs/LAND_SURFACE/5_layer_thermal.pdf.]

  • Dyer, A. J., and B. B. Hicks, 1970: Flux-gradient relationships in the constant flux layer. Quart. J. Roy. Meteor. Soc., 96, 715721, doi:10.1002/qj.49709641012.

    • Search Google Scholar
    • Export Citation
  • Galarneau, T. J., and C. A. Davis, 2013: Diagnosing forecast errors in tropical cyclone motion. Mon. Wea. Rev., 141, 405430, doi:10.1175/MWR-D-12-00071.1.

    • Search Google Scholar
    • Export Citation
  • Han, J., and H. L. Pan, 2011: Revision of convection and vertical diffusion schemes in the NCEP global forecast system. Wea. Forecasting, 26, 520533, doi:10.1175/WAF-D-10-05038.1.

    • Search Google Scholar
    • Export Citation
  • Hannay, C., D. Williamson, J. J. Hack, J. T. Kiehl, J. G. Olson, S. A. Klein, C. S. Bretherton, and M. Köhler, 2009: Evaluation of forecasted southeast Pacific stratocumulus in the NCAR, GFDL, and ECMWF models. J. Climate, 22, 28712889, doi:10.1175/2008JCLI2479.1.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 23222239, doi:10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Judd, K., C. A. Reynolds, T. A. Rosmond, and L. A. Smith, 2008: The geometry of model error. J. Atmos. Sci., 65, 17491772, doi:10.1175/2007JAS2327.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, doi:10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

  • Kay, J. E., K. Raeder, A. Gettelman, and J. Anderson, 2011: The boundary layer response to recent Arctic sea ice loss and implications for high-latitude climate feedbacks. J. Climate, 24, 428–447, doi:10.1175/2010JCLI3651.1.

    • Search Google Scholar
    • Export Citation
  • Klinker, E., and P. D. Sardeshmukh, 1992: The diagnosis of mechanical dissipation in the atmosphere from large-scale balance requirements. J. Atmos. Sci., 49, 608627, doi:10.1175/1520-0469(1992)049<0608:TDOMDI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klocke, D., and M. J. Rodwell, 2014: A comparison of two numerical weather prediction methods for diagnosing fast-physics errors in climate models. Quart. J. Roy. Meteor. Soc., 140, 517524, doi:10.1002/qj.2172.

    • Search Google Scholar
    • Export Citation
  • Martin, G. M., S. F. Milton, C. A. Senior, M. E. Brooks, and S. Ineson, 2010: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. J. Climate, 23, 59335957, doi:10.1175/2010JCLI3541.1.

    • Search Google Scholar
    • Export Citation
  • Medeiros, B., D. L. Williamson, C. Hannay, and J. G. Olson, 2012: Southeast Pacific stratocumulus in the Community Atmosphere Model. J. Climate, 25, 61756192, doi:10.1175/JCLI-D-11-00503.1.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor., 9, 857861, doi:10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Phillips, T. J., and Coauthors, 2004: Evaluating parameterizations in general circulation models. Bull. Amer. Meteor. Soc., 85, 19031915, doi:10.1175/BAMS-85-12-1903.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., and T. N. Palmer, 2007: Using numerical weather prediction to assess climate models. Quart. J. Roy. Meteor. Soc., 133, 129146, doi:10.1002/qj.23.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., and T. Jung, 2008: Understanding the local and global impacts of model physics changes: An aerosol example. Quart. J. Roy. Meteor. Soc., 134, 14791497, doi:10.1002/qj.298.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3_bw.pdf.]

  • Torn, R. D., 2010: Performance of a mesoscale ensemble Kalman filter (EnKF) during the NOAA high-resolution hurricane test. Mon. Wea. Rev., 138, 43754392, doi:10.1175/2010MWR3361.1.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and C. A. Davis, 2012: The influence of shallow convection on tropical cyclone track forecasts. Mon. Wea. Rev., 140, 2188–2197, doi:10.1175/MWR-D-11-00246.1.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., G. J. Hakim, and C. Snyder, 2006: Boundary conditions for limited-area ensemble Kalman filters. Mon. Wea. Rev., 134, 24902502, doi:10.1175/MWR3187.1.

    • Search Google Scholar
    • Export Citation
  • Velden, C. S., and Coauthors, 2005: Recent innovations in deriving tropospheric winds from meteorological satellites. Bull. Amer. Meteor. Soc., 86, 205223, doi:10.1175/BAMS-86-2-205.

    • Search Google Scholar
    • Export Citation
  • Webb, E. K., 1970: Profile relationships: The log-linear range, and extension to strong stability. Quart. J. Roy. Meteor. Soc., 96, 6790, doi:10.1002/qj.49709640708.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., G. P. Compo, and J. N. Thépaut, 2009: A comparison of variational and ensemble-based data assimilation systems for reanalysis of sparse observations. Mon. Wea. Rev., 137, 19911999, doi:10.1175/2008MWR2781.1.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and W. C. Skamarock, 2002: Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130, 20882097, doi:10.1175/1520-0493(2002)130<2088:TSMFEM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Academic Press, 676 pp.

  • Williams, K. D., and M. Brooks, 2008: Initial tendencies of cloud regimes in the Met Office unified model. J. Climate, 21, 833840, doi:10.1175/2007JCLI1900.1.

    • Search Google Scholar
    • Export Citation
  • Williams, K. D., and Coauthors, 2013: The transpose-AMIP II experiment and its application to the understanding of Southern Ocean cloud biases in climate. J. Climate, 26, 32583274, doi:10.1175/JCLI-D-12-00429.1.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., and J. G. Olson, 2007: A comparison of forecast errors in CAM2 and CAM3 at the ARM Southern Great Plains site. J. Climate, 20, 45724585, doi:10.1175/JCLI4267.1.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., and Coauthors, 2005: Moisture and temperature balances at the Atmospheric Radiation Measurement Southern Great Plains site in forecasts with the Community Atmosphere Model (CAM2). J. Geophys. Res., 110, D15S16, doi:10.1029/2004JD005109.

  • Xie, S., H.-Y. Ma, J. S. Boyle, S. A. Klein, and Y. Zhang, 2012: On the correspondence between short-and long-time-scale systematic errors in CAM4/CAM5 for the year of tropical convection. J. Climate, 25, 79377955, doi:10.1175/JCLI-D-12-00134.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., Y. Wang, and K. Hamilton, 2011: Improved representation of boundary layer clouds over the southeast Pacific in ARW-WRF using a modified Tiedtke cumulus parameterization scheme. Mon. Wea. Rev., 139, 3489–3513, doi:10.1175/MWR-D-10-05091.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 403 318 2
PDF Downloads 145 69 4

Diagnosing Model Errors from Time-Averaged Tendencies in the Weather Research and Forecasting (WRF) Model

View More View Less
  • 1 University of Oklahoma, Norman, Oklahoma
  • | 2 National Center for Atmospheric Research,* Boulder, Colorado
Restricted access

Abstract

Accurate predictions in numerical weather models depend on the ability to accurately represent physical processes across a wide range of scales. This paper evaluates the utility of model time tendencies, averaged over many forecasts at a given lead time, to diagnose systematic forecast biases in the Advanced Research version of the Weather Research and Forecasting (WRF) Model during the 2010 North Atlantic hurricane season using continuously cycled ensemble data assimilation (DA). Erroneously strong low-level heating originates from the planetary boundary layer parameterization as a consequence of using fixed sea surface temperatures, impacting the upward surface sensible heat fluxes. Warm temperature bias is observed with a magnitude 0.5 K in a deep tropospheric layer centered 700 hPa, originating primarily from the Kain–Fritsch convective parameterization.

This study is the first to diagnose systematic forecast bias in a limited-area mesoscale model using its forecast tendencies. Unlike global models where relatively fewer time steps typically encompass a DA cycling period, averaging all short-term forecast tendencies can require potentially large data. It is shown that 30-min averaging intervals can sufficiently represent the systematic model bias in this modeling configuration when initializing forecasts from an ensemble member that is generated using a DA system with an identical model configuration. However, the number of time steps before model error begins to dominate initial condition (IC) errors may vary between modeling configurations. Model and IC error are indistinguishable in short-term forecasts when initialized from the ensemble mean, a global analysis from a different model, and an ensemble member using a different parameterization.

Denotes Open Access content.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Steven Cavallo, School of Meteorology, University of Oklahoma, 120 David L. Boren Blvd., Norman, OK 73072-7307. E-mail: cavallo@ou.edu

Abstract

Accurate predictions in numerical weather models depend on the ability to accurately represent physical processes across a wide range of scales. This paper evaluates the utility of model time tendencies, averaged over many forecasts at a given lead time, to diagnose systematic forecast biases in the Advanced Research version of the Weather Research and Forecasting (WRF) Model during the 2010 North Atlantic hurricane season using continuously cycled ensemble data assimilation (DA). Erroneously strong low-level heating originates from the planetary boundary layer parameterization as a consequence of using fixed sea surface temperatures, impacting the upward surface sensible heat fluxes. Warm temperature bias is observed with a magnitude 0.5 K in a deep tropospheric layer centered 700 hPa, originating primarily from the Kain–Fritsch convective parameterization.

This study is the first to diagnose systematic forecast bias in a limited-area mesoscale model using its forecast tendencies. Unlike global models where relatively fewer time steps typically encompass a DA cycling period, averaging all short-term forecast tendencies can require potentially large data. It is shown that 30-min averaging intervals can sufficiently represent the systematic model bias in this modeling configuration when initializing forecasts from an ensemble member that is generated using a DA system with an identical model configuration. However, the number of time steps before model error begins to dominate initial condition (IC) errors may vary between modeling configurations. Model and IC error are indistinguishable in short-term forecasts when initialized from the ensemble mean, a global analysis from a different model, and an ensemble member using a different parameterization.

Denotes Open Access content.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Steven Cavallo, School of Meteorology, University of Oklahoma, 120 David L. Boren Blvd., Norman, OK 73072-7307. E-mail: cavallo@ou.edu
Save