• Angevine, W. M., H. Jiang, and T. Mauritsen, 2010: Performance of an eddy diffusivity-mass flux scheme for shallow cumulus boundary layers. Mon. Wea. Rev., 138, 28952912, doi:10.1175/2010MWR3142.1.

    • Search Google Scholar
    • Export Citation
  • Brinkmann, W. A. R., 1974: Strong downslope winds at Boulder, Colorado. Mon. Wea. Rev., 102, 592602, doi:10.1175/1520-0493(1974)102<0592:SDWABC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cao, Y., 2015: The Santa Ana Winds of Southern California in the context of fire weather. Ph.D. thesis, University of California, Los Angeles, 173 pp.

  • Chang, C.-H., and F. P. Schoenberg, 2011: Testing separability in marked multidimensional point processes with covariates. Ann. Inst. Stat. Math., 63, 11031122, doi:10.1007/s10463-010-0284-7.

    • Search Google Scholar
    • Export Citation
  • Chanson, H., 2009: Current knowledge in hydraulic jumps and related phenomena. A survey of experimental results. Eur. J. Mech., 28B, 191210, doi:10.1016/j.euromechflu.2008.06.004.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and D. R. Durran, 2004: Recent developments in the theory of atmospheric rotors. Bull. Amer. Meteor. Soc., 85, 337342, doi:10.1175/BAMS-85-3-337.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1986: Another look at downslope windstorms. Part I: The development of analogs to supercritical flow in an infinitely deep, continuously stratified fluid. J. Atmos. Sci., 43, 25272527, doi:10.1175/1520-0469(1986)043<2527:ALADWP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1990: Mountain waves and downslope winds. Atmospheric Processes over Complex Terrain, Meteor. Monogr., No. 45, Amer. Meteor. Soc., 59–81.

  • Durran, D. R., 2003: Downslope winds. Encyclopedia of Atmospheric Sciences, G. North, J. Pyle, and F. Zhang, Eds., Elsevier Science, 644–650.

  • Durran, D. R., and J. B. Klemp, 1987: Another look at downslope winds. Part II: Nonlinear amplification beneath wave-overturning layers. J. Atmos. Sci., 44, 34023412, doi:10.1175/1520-0469(1987)044<3402:ALADWP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Huang, C., Y. L. Lin, M. L. Kaplan, and J. J. Charney, 2009: Synoptic-scale and mesoscale environments conducive to forest fires during the October 2003 extreme fire event in Southern California. J. Appl. Meteor. Climatol., 48, 553579, doi:10.1175/2008JAMC1818.1.

    • Search Google Scholar
    • Export Citation
  • Hughes, M., and A. Hall, 2010: Local and synoptic mechanisms causing Southern California’s Santa Ana winds. Climate Dyn., 34, 847857, doi:10.1007/s00382-009-0650-4.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Jackson, P. L., G. Mayr, and S. Vosper, 2013: Dynamically-driven winds. Mountain Weather Research and Forecasting, F. K. Chow, S. F. J. D. Wekker, and B. J. Snyder, Eds., Springer-Verlag, 121–218.

  • Janjić, Z. I., 1994: The step-mountain Eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jones, C., F. Fujioka, and L. M. V. Carvalho, 2010: Forecast skill of synoptic conditions associated with Santa Ana winds in Southern California. Mon. Wea. Rev., 138, 45284541, doi:10.1175/2010MWR3406.1.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and D. R. Lilly, 1975: The dynamics of wave-induced downslope winds. J. Atmos. Sci., 32, 320339, doi:10.1175/1520-0469(1975)032<0320:TDOWID>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mass, C. F., D. Ovens, K. Westrick, and B. A. Colle, 2002: Does increasing horizontal resolution produce more skillful forecasts? Bull. Amer. Meteor. Soc., 83, 407430, doi:10.1175/1520-0477(2002)083<0407:DIHRPM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • National Wildfire Coordinating Group, 2014: Interagency Wildland Fire Weather Station Standards and Guidelines (PMS 426-3). National Wildfire Coordinating Group, 52 pp. [Available online at http://www.nwcg.gov/publications/interagency-wildland-fire-weather-station-standards-and-guidelines.]

  • Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, doi:10.1029/2010JD015139.

    • Search Google Scholar
    • Export Citation
  • NOAA, 1998: Automated Surface Observing System (ASOS) user’s guide. National Oceanic and Atmospheric Administration, 72 pp. [Available online at http://www.nws.noaa.gov/asos/pdfs/aum-toc.pdf.]

  • Oke, T. R., 1987: Boundary Layer Climates. Routledge, 435 pp.

  • Peltier, W. R., and T. L. Clark, 1979: The evolution and stability of finite-amplitude mountain waves. Part II: Surface wave drag and severe downslope windstorms. J. Atmos. Sci., 36, 14981529, doi:10.1175/1520-0469(1979)036<1498:TEASOF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., 2007a: A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. J. Appl. Meteor. Climatol., 46, 13831395, doi:10.1175/JAM2539.1.

    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., 2007b: A combined local and nonlocal closure model for the atmospheric boundary layer. Part II: Application and evaluation in a mesoscale meteorological model. J. Appl. Meteor. Climatol., 46, 13961409, doi:10.1175/JAM2534.1.

    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., and A. Xiu, 1995: Development and testing of a surface flux and planetary boundary layer model for application in mesoscale models. J. Appl. Meteor., 34, 1632, doi:10.1175/1520-0450-34.1.16.

    • Search Google Scholar
    • Export Citation
  • Raphael, M., 2003: The Santa Ana winds of California. Earth Interact., 7, doi:10.1175/1087-3562(2003)007<0001:TSAWOC>2.0.CO;2.

  • Reinecke, P. A., and D. R. Durran, 2009a: Initial-condition sensitivities and the predictability of downslope winds. J. Atmos. Sci., 66, 34013418, doi:10.1175/2009JAS3023.1.

    • Search Google Scholar
    • Export Citation
  • Reinecke, P. A., and D. R. Durran, 2009b: The overamplification of gravity waves in numerical solutions to flow over topography. Mon. Wea. Rev., 137, 15331549, doi:10.1175/2008MWR2630.1.

    • Search Google Scholar
    • Export Citation
  • Schamp, H., 1964: Die Winde der Erde und ihre Namen (The Winds of the Earth and Their Names). Franz Steiner Verlag, 94 pp.

  • Sheridan, P. F., and S. B. Vosper, 2006: A flow regime diagram for forecasting lee waves, rotors and downslope winds. Meteor. Appl., 13, 179195, doi:10.1017/S1350482706002088.

    • Search Google Scholar
    • Export Citation
  • Shin, H. H., S. Y. Hong, and J. Dudhia, 2012: Impacts of the lowest model level height on the performance of planetary boundary layer parameterizations. Mon. Wea. Rev., 140, 664682, doi:10.1175/MWR-D-11-00027.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Small, I. J., 1995: Santa Ana winds and the fire outbreak of fall 1993. NOAA Tech. Memo., National Oceanic and Atmospheric Administration, National Weather Service Scientific Services Division, Western Region, 30 pp. [NTIS PB-199520.]

  • Smith, R. B., 2007: Interacting mountain waves and boundary layers. J. Atmos. Sci., 64, 594607, doi:10.1175/JAS3836.1.

  • Smith, R. B., J. D. Doyle, Q. Jiang, and S. A. Smith, 2007: Alpine gravity waves: Lessons from MAP regarding mountain wave generation and breaking. Quart. J. Roy. Meteor. Soc., 133, 917936, doi:10.1002/qj.103.

    • Search Google Scholar
    • Export Citation
  • Sommers, W. T., 1978: LFM forecast variables related to Santa Ana wind occurrences. Mon. Wea. Rev., 106, 13071316, doi:10.1175/1520-0493(1978)106<1307:LFVRTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., 2007: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, 488 pp.

    • Search Google Scholar
    • Export Citation
  • Sukoriansky, S., B. Galperin, and V. Perov, 2006: A quasi-normal scale elimination model of turbulence and its application to stably stratified flows. Nonlinear Processes Geophys., 13, 922, doi:10.5194/npg-13-9-2006.

    • Search Google Scholar
    • Export Citation
  • Tyner, B., A. Aiyyer, J. Blaes, and D. R. Hawkins, 2015: An examination of wind decay, sustained wind speed forecasts, and gust factors for recent tropical cyclones in the mid-Atlantic region of the United States. Wea. Forecasting, 30, 153176, doi:10.1175/WAF-D-13-00125.1.

    • Search Google Scholar
    • Export Citation
  • Verkaik, J. W., 2000: Evaluation of two gustiness models for exposure correction calculations. J. Appl. Meteor., 39, 16131626, doi:10.1175/1520-0450(2000)039<1613:EOTGMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vosper, S. B., 2004: Inversion effects on mountain lee waves. Quart. J. Roy. Meteor. Soc., 130, 17231748, doi:10.1256/qj.03.63.

  • Wei, H., M. Segal, W. J. Gutowski, Z. Pan, R. W. Arritt, and J. W. A. Gallus, 2001: Sensitivity of simulated regional surface thermal fluxes during warm advection snowmelt to selection of the lowest model level height. J. Hydrometeor., 2, 395406, doi:10.1175/1525-7541(2001)002〈0395:SOSRST〉2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Westerling, A. L., D. R. Cayan, T. J. Brown, B. L. Hall, and L. G. Riddle, 2004: Climate, Santa Ana winds and autumn wildfires in Southern California. Eos, Trans. Amer. Geophys. Union, 85, 289296, doi:10.1029/2004EO310001.

    • Search Google Scholar
    • Export Citation
  • Wieringa, J., 1976: An objective exposure correction method for average wind speeds measured at a sheltered location. Quart. J. Roy. Meteor. Soc., 102, 241253, doi:10.1002/qj.49710243119.

    • Search Google Scholar
    • Export Citation
  • WMO, 2010: Guide to Meteorological Instruments and Methods of Observation. WMO Rep. 8, Secretariat of the WMO (World Meteorological Organization), Geneva, Switzerland, 716 pp.

  • Xiu, A., and J. E. Pleim, 2001: Development of a land surface model. Part I: Application in a mesoscale meteorological model. J. Appl. Meteor., 40, 192209, doi:10.1175/1520-0450(2001)040<0192:DOALSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yoshino, M. M., 1975: Climate in a Small Area: An Introduction to Local Meteorology. University of Tokyo Press, 549 pp.

  • Zängl, Z., A. Gohm, and F. Obleitner, 2008: The impact of the PBL scheme and the vertical distribution of model layers on simulations of Alpine foehn. Meteor. Atmos. Phys., 99, 105128, doi:10.1007/s00703-007-0276-1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 677 428 15
PDF Downloads 409 195 15

Downslope Windstorms of San Diego County. Part I: A Case Study

View More View Less
  • 1 Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California
Restricted access

Abstract

The “Santa Ana” wind is an offshore flow that affects Southern California periodically during the winter half of the year, typically between September and May. The winds can be locally gusty, particularly in the complex terrain of San Diego County, where the winds have characteristics of downslope windstorms. These winds can cause and/or rapidly spread wildfires, the threat of which is particularly acute during the autumn season before the onset of winter rains. San Diego’s largest fires, including the Cedar fire of 2003 and Witch Creek fire of 2007, occurred during Santa Ana wind events.

A case study of downslope flow during a moderately intense Santa Ana event during mid-February 2013 is presented. Motivated by the need to forecast winds impinging on electrical lines, the authors make use of an exceptionally dense network of near-surface observations in San Diego County to calibrate and verify simulations made utilizing the Advanced Research version of the Weather Research and Forecasting (WRF) Model, which in turn is employed to augment the observations. Results demonstrate that this particular Santa Ana episode consists of two pulses separated by a protracted lull. During the first pulse, the downslope flow is characterized by a prominent hydraulic jumplike feature, while during the second one the flow possesses a clear temporal progression of winds downslope. WRF has skill in capturing the evolution and magnitude of the event at most locations, although most model configurations overpredict the observed sustained wind and the forecast bias is itself biased.

Corresponding author address: Robert Fovell, Atmospheric and Oceanic Sciences, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90095. E-mail: rfovell@ucla.edu

Abstract

The “Santa Ana” wind is an offshore flow that affects Southern California periodically during the winter half of the year, typically between September and May. The winds can be locally gusty, particularly in the complex terrain of San Diego County, where the winds have characteristics of downslope windstorms. These winds can cause and/or rapidly spread wildfires, the threat of which is particularly acute during the autumn season before the onset of winter rains. San Diego’s largest fires, including the Cedar fire of 2003 and Witch Creek fire of 2007, occurred during Santa Ana wind events.

A case study of downslope flow during a moderately intense Santa Ana event during mid-February 2013 is presented. Motivated by the need to forecast winds impinging on electrical lines, the authors make use of an exceptionally dense network of near-surface observations in San Diego County to calibrate and verify simulations made utilizing the Advanced Research version of the Weather Research and Forecasting (WRF) Model, which in turn is employed to augment the observations. Results demonstrate that this particular Santa Ana episode consists of two pulses separated by a protracted lull. During the first pulse, the downslope flow is characterized by a prominent hydraulic jumplike feature, while during the second one the flow possesses a clear temporal progression of winds downslope. WRF has skill in capturing the evolution and magnitude of the event at most locations, although most model configurations overpredict the observed sustained wind and the forecast bias is itself biased.

Corresponding author address: Robert Fovell, Atmospheric and Oceanic Sciences, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90095. E-mail: rfovell@ucla.edu
Save