• Atkins, N. T., and R. M. Wakimoto, 1995: Observations of the sea-breeze front during CaPE. Part II: Dual-Doppler and aircraft analysis. Mon. Wea. Rev., 123, 944969, doi:10.1175/1520-0493(1995)123<0944:OOTSBF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., and R. M. Wakimoto, 1997: Influence of the synoptic-scale flow on sea breezes observed during CaPE. Mon. Wea. Rev., 125, 21122130, doi:10.1175/1520-0493(1997)125<2112:IOTSSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baker, R. D., B. H. Lynn, A. Boone, W.-K. Tao, and J. Simpson, 2001: The influence of soil moisture, coastline curvature, and land-breeze circulations on sea-breeze-initiated precipitation. J. Hydrometeor., 2, 193211, doi:10.1175/1525-7541(2001)002<0193:TIOSMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. E., and K. E. Mitchell, 1998: Progress on the NCEP hourly multi-sensor U.S. precipitation analysis for operations and GCIP research. Preprints, Second Symp. on Integrated Observing Systems, Phoenix, AZ, Amer. Meteor. Soc., 1011.

    • Search Google Scholar
    • Export Citation
  • Carter, M., J. M. Shepherd, S. Burian, and I. Jeyachandran, 2012: Integration of lidar data into a coupled mesoscaleland surface model: A theoretical assessment of sensitivity of urban–coastal mesoscale circulations to urban canopy parameters. J. Atmos. Oceanic Technol., 29, 328346, doi:10.1175/2011JTECHA1524.1.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., 1978: Urban effects on severe local storms at St. Louis. J. Appl. Meteor., 17, 578586, doi:10.1175/1520-0450(1978)017<0578:UEOSLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Crook, N. A., 1996: Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields. Mon. Wea. Rev., 124, 17671785, doi:10.1175/1520-0493(1996)124<1767:SOMCFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dixon, M., and G. Wiener, 1993: TITAN: Thunderstorm identification, tracking, analysis, and nowcasting—A radar-based methodology. J. Atmos. Oceanic Technol., 10, 785797, doi:10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Freitas, E. D., C. M. Rozoff, W. R. Cotton, and P. L. S. Dias, 2007: Interactions of an urban heat island and sea-breeze circulations during winter over the metropolitan area of Sao Paulo, Brazil. Bound.-Layer Meteor., 122, 4365, doi:10.1007/s10546-006-9091-3.

    • Search Google Scholar
    • Export Citation
  • Gallus, W. A., and M. Pfeifer, 2008: Intercomparison of simulations using 5 WRF microphysical schemes with dual-polarization data for a German squall line. Adv. Geosci., 16, 109116, doi:10.5194/adgeo-16-109-2008.

    • Search Google Scholar
    • Export Citation
  • Huff, F. A., and S. A. Changnon, 1972: Climatological assessment of urban effects on precipitation at St. Louis. J. Appl. Meteor., 11, 823842, doi:10.1175/1520-0450(1972)011<0823:CAOUEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jessup, S. M., and A. T. DeGaetano, 2008: A statistical comparison of the properties of flash flooding and nonflooding precipitation events in portions of New York and Pennsylvania. Wea. Forecasting, 23, 114130, doi:10.1175/2007WAF2006066.1.

    • Search Google Scholar
    • Export Citation
  • Laird, N. F., D. A. R. Kristovich, R. M. Rauber, H. T. Ochs III, and L. J. Miller, 1995: The Cape Canaveral sea and river breezes: Kinematic structure and convective initiation. Mon. Wea. Rev., 123, 29422956, doi:10.1175/1520-0493(1995)123<2942:TCCSAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, D., and E. Bou-Zeid, 2014: Quality and sensitivity of high-resolution numerical simulatioin of urban heat islands. Environ. Res. Lett., 9, 055001, doi:10.1088/1748-9326/9/5/055001.

    • Search Google Scholar
    • Export Citation
  • Li, D., E. Bou-Zeid, M. L. Baeck, S. Jessup, and J. A. Smith, 2013: Modeling land surface processes and heavy rainfall in urban environments: Sensitivity to urban surface representations. J. Hydrometeor., 14, 10981118, doi:10.1175/JHM-D-12-0154.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., and K. E. Mitchell, 2005: The NCEP Stage II/IV hourly precipitation analyses: Development and applications. 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2. [Available online at https://ams.confex.com/ams/Annual2005/techprogram/paper_83847.htm.]

  • Miller, S. T. K., B. D. Keim, R. W. Talbot, and H. Mao, 2003: Sea breeze: Structure, forecasting, and impacts. Rev. Geophys., 41, 1011, doi:10.1029/2003RG000124.

    • Search Google Scholar
    • Export Citation
  • Niyogi, D., T. Holt, S. Zhong, P. C. Pyle, and J. Basara, 2006: Urban and land surface effects on the 30 July 2003 mesoscale convective system event observed in the southern Great Plains. J. Geophys. Res., 111, D19107, doi:10.1029/2005JD006746.

    • Search Google Scholar
    • Export Citation
  • Ntelekos, A. A., J. A. Smith, and W. F. Krajewski, 2007: Climatological analyses of thunderstorms and flash floods in the Baltimore metropolitan region. J. Hydrometeor., 8, 88101, doi:10.1175/JHM558.1.

    • Search Google Scholar
    • Export Citation
  • Ntelekos, A. A., J. A. Smith, M. L. Baeck, W. F. Krajewski, A. J. Miller, and R. Goska, 2008: Extreme hydrometeorological events and the urban environment: Dissecting the 7 July 2004 thunderstorm over the Baltimore MD metropolitan region. Water Resour. Res., 44, W08446, doi:10.1029/2007WR006346.

    • Search Google Scholar
    • Export Citation
  • Ntelekos, A. A., J. A. Smith, L. Donner, J. D. Fast, W. I. Gustafson, E. G. Chapman, and W. F. Krajewski, 2009: The effects of aerosols on intense convective precipitation in the northeastern United States. Quart. J. Roy. Meteor. Soc., 135, 13671391, doi:10.1002/qj.476.

    • Search Google Scholar
    • Export Citation
  • Ohashi, Y., and H. Kida, 2002: Local circulations developed in the vicinity of both coastal and inland urban areas: A numerical study with a mesoscale atmospheric model. J. Appl. Meteor., 41, 3045, doi:10.1175/1520-0450(2002)041<0030:LCDITV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ramamurthy, P., E. Bou-Zeid, J. A. Smith, Z. Wang, M. L. Baeck, N. Z. Saliendra, J. L. Hom, and C. Welty, 2014: Influence of subfacet heterogeneity and material properties on the urban surface energy budget. J. Appl. Meteor. Climatol., 53, 21142129, doi:10.1175/JAMC-D-13-0286.1.

    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., W. R. Cotton, and J. O. Adegoke, 2003: Simulation of St. Louis, Missouri, land use impacts on thunderstorms. J. Appl. Meteor., 42, 716586, doi:10.1175/1520-0450(2003)042<0716:SOSLML>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryu, Y.-H., and J.-J. Baik, 2013: Daytime local circulations and their interactions in the Seoul metropolitan area. J. Appl. Meteor. Climatol., 52, 784801, doi:10.1175/JAMC-D-12-0157.1.

    • Search Google Scholar
    • Export Citation
  • Ryu, Y.-H., J. A. Smith, and E. Bou-Zeid, 2015: On the climatology of precipitable water and water vapor flux in the mid-Atlantic region of the United States. J. Hydrometeor., 16, 7087, doi:10.1175/JHM-D-14-0030.1.

    • Search Google Scholar
    • Export Citation
  • Shepherd, J. M., 2005: A review of current investigations of urban-induced rainfall and recommendations for the future. Earth Interact., 9, doi:10.1175/EI156.1.

    • Search Google Scholar
    • Export Citation
  • Shepherd, J. M., 2013: Impacts of urbanization on precipitation and storms: Physical insights and vulnerabilities. Climate Vulnerability: Understanding and Addressing Threats to Essential Resources, R. A. Pielke, Ed., Elsevier, 109125.

    • Search Google Scholar
    • Export Citation
  • Shepherd, J. M., and S. J. Burian, 2003: Detection of urban-induced rainfall anomalies in a major coastal city. Earth Interact., 7, doi:10.1175/1087-3562(2003)007<0001:DOUIRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shepherd, J. M., T. Andersen, C. Strother, A. Horst, L. Bounoua, and C. Mitra, 2013: Urban climate archipelagos: A new framework for urban impacts on climate. Earthzine. [Available online at http://earthzine.org/2013/11/29/urban-climate-archipelagos-a-new-framework-for-urban-impacts-on-climate/.]

  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Smith, J. A., M. L. Baeck, G. Villarini, C. Welty, A. J. Miller, and W. F. Krajewski, 2012: Analyses of a long-term, high-resolution radar rainfall data set for the Baltimore meteropolitan region. Water Resour. Res., 48, W04504, doi:10.1029/2011WR010641.

    • Search Google Scholar
    • Export Citation
  • U.S. Census Bureau, 2013: 2010 Census urban area facts. [Available online at http://www.census.gov/geo/reference/ua/uafacts.html.]

  • Walser, A., D. Luthi, and C. Schar, 2004: Predictability of precipitation in a cloud-resolving model. Mon. Wea. Rev., 132, 560577, doi:10.1175/1520-0493(2004)132<0560:POPIAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Z.-H., E. Bou-Zeid, and J. A. Smith, 2013: A coupled energy transport and hydrological model for urban canopies evaluated using a wireless sensor network. Quart. J. Roy. Meteor. Soc., 139, 16431657, doi:10.1002/qj.2032.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., 2000: The effect of small-scale moisture variability on thunderstorm initiation. Mon. Wea. Rev., 128, 40174030, doi:10.1175/1520-0493(2000)129<4017:TEOSSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and D. L. Megenhardt, 1997: Thunderstorm initiation, organization, and lifetime associated with Florida boundary layer convergence lines. Mon. Wea. Rev., 125, 15071525, doi:10.1175/1520-0493(1997)125<1507:TIOALA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, D., X. Dong, B. Xi, Z. Feng, A. Kennedy, G. Mullendore, M. Gilmore, and W.-K. Tao, 2013: Impacts of microphysical scheme on convective and stratiform characteristics in two high precipitation squall line events. J. Geophys. Res. Atmos., 118, 11 11911 135, doi:10.1002/jgrd.50798.

    • Search Google Scholar
    • Export Citation
  • Yang, L., J. A. Smith, M. L. Baeck, E. Bou-Zeid, S. M. Jessup, F. Tian, and H. Hu, 2014: Impact of urbanization on heavy convective precipitation under strong large-scale forcing: A case study over the Milwaukee–Lake Michigan region. J. Hydrometeor., 15, 261278, doi:10.1175/JHM-D-13-020.1.

    • Search Google Scholar
    • Export Citation
  • Yeung, J. K., J. A. Smith, G. Villarini, A. A. Ntelekos, M. L. Baeck, and W. F. Krajewski, 2011: Analyses of the warm season rainfall climatology of the northeastern US using regional climate model simulations and radar rainfall fields. Adv. Water Resour., 34, 184204, doi:10.1016/j.advwatres.2010.10.005.

    • Search Google Scholar
    • Export Citation
  • Yeung, J. K., J. A. Smith, M. L. Baeck, and G. Villarini, 2015: Lagrangian analyses of rainfall structure and evolution for organized thunderstorm systems in the urban corridor of the northeastern United States. J. Hydrometeor., 16, 15751595, doi:10.1175/JHM-D-14-0095.1

    • Search Google Scholar
    • Export Citation
  • Yoshikado, H., 1992: Numerical study of the daytime urban effect and its interaction with the sea breeze. J. Appl. Meteor., 31, 11461164, doi:10.1175/1520-0450(1992)031<1146:NSOTDU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 342 180 15
PDF Downloads 281 162 18

The Influence of Land Surface Heterogeneities on Heavy Convective Rainfall in the Baltimore–Washington Metropolitan Area

View More View Less
  • 1 Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey
Restricted access

Abstract

Low-level convergence induced by land surface heterogeneities can have substantial influence on atmospheric convection and rainfall. Analyses of heavy convective rainfall in the Baltimore–Washington metropolitan area are performed using the Weather Research and Forecasting (WRF) Model, coupled with the Princeton Urban Canopy Model (PUCM) that resolves urban subfacet heterogeneity. Analyses center on storms that produced heavy rainfall and record urban flooding in Baltimore on 1 June 2012. The control simulation using PUCM shows a better performance in reproducing the surface energy balance and rainfall than the simulation using a traditional slab model for the urban area. Sensitivity experiments are carried out to identify the role of the land surface heterogeneities, arising from land–water and urban–nonurban contrasts in the Baltimore–Washington metropolitan area, on heavy rainfall from organized thunderstorm systems. The intersection of low-level convergence zones from thunderstorm downdrafts and from the bay breeze from the Chesapeake Bay enhances the upward motion of preexisting convective storms. The larger sensible heating from the urban area modifies the low-level temperature and wind fields, which in turn modifies the bay breeze. The enhanced moisture supply in the deepened bay-breeze inflow layer due to urban heating promotes intense convection and heavy rainfall in conjunction with the enhanced upward motion at intersecting convergence zones. This study suggests that better representations of surface heat and moisture fluxes in urban areas along major water bodies are required to better capture the timing and location of severe thunderstorms and heavy rainfall.

Corresponding author address: Young-Hee Ryu, Department of Civil and Environmental Engineering, Princeton University, E-208 E-Quad, Princeton, NJ 08540. E-mail: younghee@princeton.edu

Abstract

Low-level convergence induced by land surface heterogeneities can have substantial influence on atmospheric convection and rainfall. Analyses of heavy convective rainfall in the Baltimore–Washington metropolitan area are performed using the Weather Research and Forecasting (WRF) Model, coupled with the Princeton Urban Canopy Model (PUCM) that resolves urban subfacet heterogeneity. Analyses center on storms that produced heavy rainfall and record urban flooding in Baltimore on 1 June 2012. The control simulation using PUCM shows a better performance in reproducing the surface energy balance and rainfall than the simulation using a traditional slab model for the urban area. Sensitivity experiments are carried out to identify the role of the land surface heterogeneities, arising from land–water and urban–nonurban contrasts in the Baltimore–Washington metropolitan area, on heavy rainfall from organized thunderstorm systems. The intersection of low-level convergence zones from thunderstorm downdrafts and from the bay breeze from the Chesapeake Bay enhances the upward motion of preexisting convective storms. The larger sensible heating from the urban area modifies the low-level temperature and wind fields, which in turn modifies the bay breeze. The enhanced moisture supply in the deepened bay-breeze inflow layer due to urban heating promotes intense convection and heavy rainfall in conjunction with the enhanced upward motion at intersecting convergence zones. This study suggests that better representations of surface heat and moisture fluxes in urban areas along major water bodies are required to better capture the timing and location of severe thunderstorms and heavy rainfall.

Corresponding author address: Young-Hee Ryu, Department of Civil and Environmental Engineering, Princeton University, E-208 E-Quad, Princeton, NJ 08540. E-mail: younghee@princeton.edu
Save