• Anthes, R. A., 1970: Numerical experimenting with a two-dimensional horizontal variable grid. Mon. Wea. Rev., 98, 810822, doi:10.1175/1520-0493(1970)098<0810:NEWATD>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and V. Lamb, 1977: Computational design of the basic dynamical processes in the UCLA general circulation moder. Methods in Computational Physics, J. Chang, Ed., Vol. 17, General Circulation Models of the Atmosphere, Academic Press, 174–264.

  • Beck, J., and C. C. Weiss, 2013: An assessment of low-level baroclinity and vorticity within a simulated supercell. Mon. Wea. Rev., 141, 649669, doi:10.1175/MWR-D-11-00115.1.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and M. L. Weisman, 2000: The interaction of numerically simulated supercells initiated along lines. Mon. Wea. Rev., 128, 31283149, doi:10.1175/1520-0493(2000)128<3128:TIONSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 10461053, doi:10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, doi:10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Byers, H. R., and R. R. Braham Jr., 1949: The Thunderstorm. U. S. Department of Commerce, 287 pp.

  • Conte, S. D., and C. deBoor, 1972: Elementary Numerical Analysis. McGraw-Hill, 432 pp.

  • Dahl, J. M. L., M. D. Parker, and L. J. Wicker, 2012: Uncertainties in trajectory calculations within near-surface mesocyclones of simulated supercells. Mon. Wea. Rev., 140, 29592966, doi:10.1175/MWR-D-12-00131.1.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 1984: Streamwise vorticity: The origin of updraft rotation in supercell storms. J. Atmos. Sci., 41, 29913006, doi:10.1175/1520-0469(1984)041<2991:SVTOOU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 2002: Linear and nonlinear propagation of supercell thunderstorms. J. Atmos. Sci., 59, 31783205, doi:10.1175/1520-0469(2003)059<3178:LANPOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., D. W. Burgess, and M. Foster, 1990: Test of helicity as a tornado forecast parameter. Preprints, 16th Conf. on Severe Local Storms, Kananaskis Park, AB, Canada, Amer. Meteor. Soc., 588592.

  • Droegemeier, K. K., and R. B. Wilhelmson, 1985: Three-dimensional numerical modeling of convection produced by interacting thunderstorm outflows. Part I: Control simulation and low-level moisture variations. J. Atmos. Sci., 42, 23812403, doi:10.1175/1520-0469(1985)042<2381:TDNMOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 1995: Atmospheric Convection. Oxford University Press, 580 pp.

  • Finley, C. A., W. R. Cotton, and R. A. Pielke Sr., 2001: Numerical simulation of tornadogenesis in a high-precipitation supercell. Part I: Storm evolution and transition into a bow echo. J. Atmos. Sci., 58, 15971629, doi:10.1175/1520-0469(2001)058<1597:NSOTIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • French, A. J., and M. D. Parker, 2012: Observations of mergers between squall lines and isolated supercell thunderstorms. Wea. Forecasting, 27, 255278, doi:10.1175/WAF-D-11-00058.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., and C.-P. Cheng, 1977: Radar characteristics of tropical convection observed during GATE: Mean properties and trends over the summer season. Mon. Wea. Rev., 105, 964980, doi:10.1175/1520-0493(1977)105<0964:RCOTCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jewett, B. F., R. W. Przybylinsky, and R. B. Wilhelmson, 2006: Numerical simulation of the 24 April, 2002 storm merger between a left moving storm and supercell. 23rd Conf. on Severe Local Storms, St. Louis, MO, Amer. Meteor. Soc., P11.3. [Available online at https://ams.confex.com/ams/23SLS/techprogram/paper_115478.htm.]

  • Klemp, J. B., and R. Rotunno, 1983: A study of the tornadic region within a supercell thunderstorm. J. Atmos. Sci., 40, 359377, doi:10.1175/1520-0469(1983)040<0359:ASOTTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kulie, M. S., and Y.-L. Lin, 1998: The structure and evolution of a numerically simulated high-precipitation supercell thunderstorm. Mon. Wea. Rev., 126, 20902116, doi:10.1175/1520-0493(1998)126<2090:TSAEOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, B. D., B. F. Jewett, and R. B. Wilhelmson, 2006: The 19 April 1996 Illinois tornado outbreak. Part II: Cell mergers and associated tornado incidence. Wea. Forecasting, 21, 449464, doi:10.1175/WAF943.1.

    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., 1976: The flanking line: A severe thunderstorm intensification mechanism. J. Atmos. Sci., 33, 686694, doi:10.1175/1520-0469(1976)033<0686:TFLAST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., and C. A. Doswell III, 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev., 107, 11841197, doi:10.1175/1520-0493(1979)107<1184:STEAMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1966: On the application of the eddy viscosity concept in the inertial sub-range of turbulence. NCAR Tech. Memo. 123, 22 pp.

  • McCaul, E. M., and M. L. Weisman, 2001: The sensitivity of simulated supercell structure and intensity to variations in the shapes of environmental buoyancy and shear profiles. Mon. Wea. Rev., 129, 664687, doi:10.1175/1520-0493(2001)129<0664:TSOSSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. Milbrandt, 2011: Comparison of two-moment bulk microphysics schemes in idealized supercell thunderstorm simulations. Mon. Wea. Rev., 139, 11031130, doi:10.1175/2010MWR3433.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677, doi:10.1175/JAS3446.1.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 1976: A simple boundary condition for unbounded hyperbolic flows. J. Comput. Sci., 21, 251269.

  • Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1997: Numerical Recipes in FORTRAN 77. Cambridge University Press, 933 pp.

  • Przybylinski, R. W., T. J. Shear, D. L. Ferry, E. H. Goetsch, R. R. Czys, and N. E. Wescott, 1993: Doppler radar observations of high-precipitation supercells over the mid-Mississippi valley region. Preprints, 17th Conf. on Severe Local Storms, St. Louis, MO, Amer. Meteor. Soc., 158163.

  • Rogers, J. W., 2012: Significant tornado events associated with cell mergers. 26th Conf. on Severe Local Storms, Nashville, TN, Amer. Meteor. Soc., 9.4. [Available online at https://ams.confex.com/ams/26SLS/webprogram/Paper211575.html.]

  • Rogers, J. W., and C. C. Weiss, 2008: The association of cell mergers with tornado occurrence. 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., P.3.23. [Available online at https://ams.confex.com/ams/pdfpapers/141784.pdf.]

  • Rotunno, R., and J. B. Klemp, 1982: The influence of shear-induced pressure gradient on thunderstorm motion. Mon. Wea. Rev., 110, 136151, doi:10.1175/1520-0493(1982)110<0136:TIOTSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and J. B. Klemp, 1985: On the rotation and propagation of simulated supercell thunderstorms. J. Atmos. Sci., 42, 271292, doi:10.1175/1520-0469(1985)042<0271:OTRAPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, doi:10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., N. E. Westcott, R. J. Clerman, and R. A. Peilke, 1980: On cumulus mergers. Arch. Meteor. Geophys. Bioklim., 29A, 1–40.

  • Tanamachi, R. L., P. L. Heinselman, and L. J. Wicker, 2015: Impacts of a storm merger on the 24 May 2011 El Reno, Oklahoma, tornadic supercell. Wea. Forecasting, 30, 501–524, doi:10.1175/WAF-D-14-00164.1.

  • Tao, W.-K., and J. Simpson, 1989: A further study of cumulus interactions and mergers: Three-dimensional simulations with trajectory analyses. J. Atmos. Sci., 46, 29743004, doi:10.1175/1520-0469(1989)046<2974:AFSOCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Verlinde, J., and W. R. Cotton, 1993: Fitting microphysical observations of nonsteady convective clouds to a numerical model: An application of the adjoint technique of data assimilation to a kinematic model. Mon. Wea. Rev., 121, 27762593, doi:10.1175/1520-0493(1993)121<2776:FMOONC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., 1992: The role of convectively generated rear-inflow jets in the evolution of long-lived mesoconvective systems. J. Atmos. Sci., 49, 18261847, doi:10.1175/1520-0469(1992)049<1826:TROCGR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520, doi:10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1984: The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea. Rev., 112, 24792498, doi:10.1175/1520-0493(1984)112<2479:TSACON>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Westcott, N., 1984: A historical perspective on cloud mergers. Bull. Amer. Meteor. Soc., 65, 219226, doi:10.1175/1520-0477(1984)065<0219:AHPOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Westcott, N., 1994: Merging of convective clouds: Cloud initiation, bridging, and subsequent growth. Mon. Wea. Rev., 122, 780790, doi:10.1175/1520-0493(1994)122<0780:MOCCCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilhelmson, R. B., and C.-S. Chen, 1982: A simulation of the development of successive cells along a cold outflow boundary. J. Atmos. Sci., 39, 14661481, doi:10.1175/1520-0469(1982)039<1466:ASOTDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wurman, J. M., Y. P. Richardson, C. Alexander, S. Weygandt, and P. F. Zhang, 2007: Dual-Doppler and single-Doppler analysis of a tornadic storm undergoing mergers and repeated tornadogenesis. Mon. Wea. Rev., 135, 736758, doi:10.1175/MWR3276.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 617 355 5
PDF Downloads 256 121 7

Long-Term Morphological Changes in Simulated Supercells Following Mergers with Nascent Supercells in Directionally Varying Shear

View More View Less
  • 1 Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania
Restricted access

Abstract

Mergers involving supercells remain a challenge for severe thunderstorm forecasting. In this study, mergers between supercells and ordinary cells (e.g., cells forming in a similar environment but too young to be fully developed supercells) are investigated. A series of numerical experiments are performed using an idealized, homogenous environment supportive of cyclonically rotating, right-moving supercells. Warm bubbles are introduced at different times, resulting in two storms of different maturity; their placement is used to control the location of the merger and the relative maturity of the second storm. Simplified conceptual models for the long-term outcomes of mergers are developed. In the simplest mode of merger, outflow from the new cell cuts off inflow to the original. If the new cell’s cold pool is not sufficiently strong to cut off the inflow to the original cell, the minimum separation of the updraft maxima during the merger becomes a key controlling factor in the outcome. If it is less than 10 km, an updraft collision occurs, resulting in a classic supercell. If it is greater than 20 km and the new cell merges into the original cell’s forward flank, a dual-cell system results. If it is between 10 and 20 km, the enhanced precipitation produced during the merger leads to a cold pool surge and an updraft bridge, joining the original updrafts and developing into either a small bow echo (with forward-flank mergers) or a supercell on the classic high-precipitation spectrum (with rear-flank mergers), depending on the distribution of precipitation in the merging system.

Denotes Open Access content.

Corresponding author address: Ryan Hastings, National Severe Storms Laboratory, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: ryan.hastings@noaa.gov

Abstract

Mergers involving supercells remain a challenge for severe thunderstorm forecasting. In this study, mergers between supercells and ordinary cells (e.g., cells forming in a similar environment but too young to be fully developed supercells) are investigated. A series of numerical experiments are performed using an idealized, homogenous environment supportive of cyclonically rotating, right-moving supercells. Warm bubbles are introduced at different times, resulting in two storms of different maturity; their placement is used to control the location of the merger and the relative maturity of the second storm. Simplified conceptual models for the long-term outcomes of mergers are developed. In the simplest mode of merger, outflow from the new cell cuts off inflow to the original. If the new cell’s cold pool is not sufficiently strong to cut off the inflow to the original cell, the minimum separation of the updraft maxima during the merger becomes a key controlling factor in the outcome. If it is less than 10 km, an updraft collision occurs, resulting in a classic supercell. If it is greater than 20 km and the new cell merges into the original cell’s forward flank, a dual-cell system results. If it is between 10 and 20 km, the enhanced precipitation produced during the merger leads to a cold pool surge and an updraft bridge, joining the original updrafts and developing into either a small bow echo (with forward-flank mergers) or a supercell on the classic high-precipitation spectrum (with rear-flank mergers), depending on the distribution of precipitation in the merging system.

Denotes Open Access content.

Corresponding author address: Ryan Hastings, National Severe Storms Laboratory, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: ryan.hastings@noaa.gov
Save