• Archambault, H. M., L. F. Bosart, D. Keyser, and A. R. Aiyyer, 2008: Influence of large-scale flow regimes on cool-season precipitation in the northeastern United States. Mon. Wea. Rev., 136, 29452963, doi:10.1175/2007MWR2308.1.

    • Search Google Scholar
    • Export Citation
  • Archambault, H. M., L. F. Bosart, D. Keyser, and J. M. Cordeira, 2013: A climatological analysis of the extratropical flow response to recurving western North Pacific tropical cyclones. Mon. Wea. Rev., 141, 23252346, doi:10.1175/MWR-D-12-00257.1.

    • Search Google Scholar
    • Export Citation
  • Archambault, H. M., D. Keyser, L. F. Bosart, C. A. Davis, and J. M. Cordeira, 2015: A composite perspective of the extratropical flow response to recurving western North Pacific tropical cyclones. Mon. Wea. Rev., 143, 11221141, doi:10.1175/MWR-D-14-00270.1.

    • Search Google Scholar
    • Export Citation
  • Avila, L. A., 2012: Tropical cyclone report: Tropical Storm Sean, 8–11 November 2011. Rep. AL192011, National Hurricane Center, 11 pp. [Available online at http://www.nhc.noaa.gov/data/tcr/AL192011_Sean.pdf.]

  • Banzon, V. F., R. W. Reynolds, D. Stokes, and Y. Xue, 2014: A 1/4°-spatial-resolution daily sea surface temperature climatology based on a blended satellite and in situ analysis. J. Climate, 27, 82218228, doi:10.1175/JCLI-D-14-00293.1.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality, and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, doi:10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Beven, J. L., 2006: Tropical cyclone report: Tropical Storm Delta, 22–28 November 2005. Rep. AL292005, National Hurricane Center, 12 pp. [Available online at http://www.nhc.noaa.gov/data/tcr/AL292005_Delta.pdf.]

  • Bosart, L. F., and J. A. Bartlo, 1991: Tropical storm formation in a baroclinic environment. Mon. Wea. Rev., 119, 19792013, doi:10.1175/1520-0493(1991)119<1979:TSFIAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., and G. M. Lackmann, 1995: Postlandfall tropical cyclone reintensification in a weakly baroclinic environment: A case study of Hurricane David (September 1979). Mon. Wea. Rev., 123, 32683291, doi:10.1175/1520-0493(1995)123<3268:PTCRIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bracken, W. E., and L. F. Bosart, 2000: The role of synoptic-scale flow during tropical cyclogenesis over the North Atlantic Ocean. Mon. Wea. Rev., 128, 353376, doi:10.1175/1520-0493(2000)128<0353:TROSSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., M. E. Hardman, T. W. Harrold, and C. W. Pardoe, 1973: The structure of rainbands within a mid-latitude depression. Quart. J. Roy. Meteor. Soc., 99, 215231, doi:10.1002/qj.49709942002.

    • Search Google Scholar
    • Export Citation
  • Čampa, J., and H. Wernli, 2012: A PV perspective on the vertical structure of mature midlatitude cyclones in the Northern Hemisphere. J. Atmos. Sci., 69, 725740, doi:10.1175/JAS-D-11-050.1.

    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., 1980: Airflow through midlatitude cyclones and the comma cloud pattern. Mon. Wea. Rev., 108, 14981509, doi:10.1175/1520-0493(1980)108<1498:ATMCAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Case, R. A., 1990: Preliminary tropical cyclone report: Tropical Storm Edouard, 2–11 August 1990. National Hurricane Center, 6 pp. [Available online at http://www.nhc.noaa.gov/archive/storm_wallets/atlantic/atl1990-prelim/edouard/.]

  • Chang, E. K. M., 1993: Downstream development of baroclinic waves as inferred from regression analysis. J. Atmos. Sci., 50, 20382053, doi:10.1175/1520-0469(1993)050<2038:DDOBWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cordeira, J. M., and L. F. Bosart, 2010: The antecedent large-scale conditions of the “Perfect Storms” of late October and early November 1991. Mon. Wea. Rev., 138, 25462569, doi:10.1175/2010MWR3280.1.

    • Search Google Scholar
    • Export Citation
  • Cordeira, J. M., and L. F. Bosart, 2011: Cyclone interactions and evolutions during the “Perfect Storms” of late October and early November 1991. Mon. Wea. Rev., 139, 16831707, doi:10.1175/2010MWR3537.1.

    • Search Google Scholar
    • Export Citation
  • CPC, 2007: CPC 4-km global IR dataset. CPC, accessed 6 March 2015. [Available online at ftp://disc2.nascom.nasa.gov/data/s4pa/TRMM_ANCILLARY/MERG/.]

  • Danielson, R. E., J. R. Gyakum, and D. N. Straub, 2004: Downstream baroclinic development among forty-one cold-season eastern North Pacific cyclones. Atmos.–Ocean, 42, 235250, doi:10.3137/ao.420402.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and K. A. Emanuel, 1991: Potential vorticity diagnostics of cyclogenesis. Mon. Wea. Rev., 119, 19291953, doi:10.1175/1520-0493(1991)119<1929:PVDOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and L. F. Bosart, 2001: Numerical simulations of the genesis of Hurricane Diana (1984). Part I: Control simulation. Mon. Wea. Rev., 129, 18591881, doi:10.1175/1520-0493(2001)129<1859:NSOTGO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and L. F. Bosart, 2003: Baroclinically induced tropical cyclogenesis. Mon. Wea. Rev., 131, 27302747, doi:10.1175/1520-0493(2003)131<2730:BITC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and L. F. Bosart, 2004: The TT problem: Forecasting the tropical transition of cyclones. Bull. Amer. Meteor. Soc., 85, 16571662, doi:10.1175/BAMS-85-11-1657.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., J. A. Knaff, and B. H. Connell, 2001: A tropical cyclone genesis parameter for the tropical Atlantic. Wea. Forecasting, 16, 219233, doi:10.1175/1520-0434(2001)016<0219:ATCGPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, doi:10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2005: Genesis and maintenance of “Mediterranean hurricanes.” Adv. Geosci., 2, 217220, doi:10.5194/adgeo-2-217-2005.

    • Search Google Scholar
    • Export Citation
  • Ernst, J. A., and M. Matson, 1983: A Mediterranean tropical storm? Weather, 38, 332337, doi:10.1002/j.1477-8696.1983.tb04818.x.

  • Evans, J. L., and M. P. Guishard, 2009: Atlantic subtropical storms. Part I: Diagnostic criteria and composite analysis. Mon. Wea. Rev., 137, 20652080, doi:10.1175/2009MWR2468.1.

    • Search Google Scholar
    • Export Citation
  • Evans, J. L., and A. Braun, 2012: A climatology of subtropical cyclones in the South Atlantic. J. Climate, 25, 73287340, doi:10.1175/JCLI-D-11-00212.1.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., 2002: Fundamental mechanisms of the growth and decay of the PNA teleconnection pattern. Quart. J. Roy. Meteor. Soc., 128, 775796, doi:10.1256/0035900021643683.

    • Search Google Scholar
    • Export Citation
  • Franklin, J. L., 2006: Tropical cyclone report: Hurricane Vince, 8–11 October 2005. Rep. AL242005, National Hurricane Center, 9 pp. [Available online at http://www.nhc.noaa.gov/data/tcr/AL242005_Vince.pdf.]

  • Garde, L. A., A. B. Pezza, and J. A. T. Bye, 2010: Tropical transition of the 2001 Australian Duck. Mon. Wea. Rev., 138, 20382057, doi:10.1175/2009MWR3220.1.

    • Search Google Scholar
    • Export Citation
  • Gozzo, L. F., R. P. da Rocha, M. S. Reboita, and S. Sugahara, 2014: Subtropical cyclones over the southwestern South Atlantic: Climatological aspects and case study. J. Climate, 27, 85438562, doi:10.1175/JCLI-D-14-00149.1.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, doi:10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Guishard, M. P., J. L. Evans, and R. E. Hart, 2009: Atlantic subtropical storms. Part II: Climatology. J. Climate, 22, 35743594, doi:10.1175/2008JCLI2346.1.

    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., 2003: Developing wave packets in the North Pacific storm track. Mon. Wea. Rev., 131, 28242837, doi:10.1175/1520-0493(2003)131<2824:DWPITN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., G. T. Bates, J. S. Whitaker, D. R. Murray, M. Fiorino, T. J. Galarneau Jr., Y. Zhu, and W. Lapenta, 2013: NOAA’s second-generation global medium range ensemble reforecast dataset. Bull. Amer. Meteor. Soc., 94, 15531565, doi:10.1175/BAMS-D-12-00014.1.

    • Search Google Scholar
    • Export Citation
  • Hart, R. E., 2003: A cyclone phase space derived from thermal wind and thermal asymmetry. Mon. Wea. Rev., 131, 585616, doi:10.1175/1520-0493(2003)131<0585:ACPSDF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and A. W. Robinson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, doi:10.1002/qj.49711147002.

    • Search Google Scholar
    • Export Citation
  • Hovmöller, E., 1949: The trough-and-ridge diagram. Tellus, 1A, 6266, doi:10.1111/j.2153-3490.1949.tb01260.x.

  • Hulme, A. L., and J. E. Martin, 2009a: Synoptic- and frontal-scale influences on tropical transition events in the Atlantic basin. Part I: A six-case survey. Mon. Wea. Rev., 137, 36053625, doi:10.1175/2009MWR2802.1.

    • Search Google Scholar
    • Export Citation
  • Hulme, A. L., and J. E. Martin, 2009b: Synoptic- and frontal-scale influences on tropical transition events in the Atlantic basin. Part II: Tropical transition of Hurricane Karen. Mon. Wea. Rev., 137, 36263650, doi:10.1175/2009MWR2803.1.

    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., R. J. Joyce, and Y. Yarosh, 2001: A real-time global half-hourly pixel-resolution infrared dataset and its applications. Bull. Amer. Meteor. Soc., 82, 205217, doi:10.1175/1520-0477(2001)082<0205:ARTGHH>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247267, doi:10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS). Bull. Amer. Meteor. Soc., 91, 363376, doi:10.1175/2009BAMS2755.1.

    • Search Google Scholar
    • Export Citation
  • Madonna, E., H. Wernli, H. Joos, and O. Martius, 2014: Warm conveyor belts in the ERA-Interim dataset (1979–2010). Part I: Climatology and potential vorticity evolution. J. Climate, 27, 326, doi:10.1175/JCLI-D-12-00720.1.

    • Search Google Scholar
    • Export Citation
  • Mauk, R. G., and J. S. Hobgood, 2012: Tropical cyclone formation in environments with cool SST and high wind shear over the northeastern Atlantic Ocean. Wea. Forecasting, 27, 14331448, doi:10.1175/WAF-D-11-00048.1.

    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., E. H. Atallah, J. R. Gyakum, and L. F. Bosart, 2006a: Hurricane Juan (2003). Part I: A diagnostic and compositing life cycle study. Mon. Wea. Rev., 134, 17251747, doi:10.1175/MWR3142.1.

    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., L. F. Bosart, C. A. Davis, E. H. Atallah, J. R. Gyakum, and K. A. Emanuel, 2006b: Analysis of Hurricane Catarina (2004). Mon. Wea. Rev., 134, 30293053, doi:10.1175/MWR3330.1.

    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., T. J. Galarneau Jr., L. F. Bosart, and J. A. Milbrandt, 2010: Development and tropical transition of an Alpine lee cyclone. Part I: Case analysis and evaluation of numerical guidance. Mon. Wea. Rev., 138, 22812307, doi:10.1175/2009MWR3147.1.

    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., T. J. Galarneau Jr., L. F. Bosart, R. W. Moore, and O. Martius, 2013: A global climatology of baroclinically influenced tropical cyclogenesis. Mon. Wea. Rev., 141, 19631989, doi:10.1175/MWR-D-12-00186.1.

    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., E. L. Davies, J. G. Fairman Jr., T. J. Galarneau Jr., and D. M. Schultz, 2015: Revisiting the 26.5°C sea surface temperature threshold for tropical cyclone development. Bull. Amer. Meteor. Soc., 96, 19291943, doi:10.1175/BAMS-D-13-00254.1.

    • Search Google Scholar
    • Export Citation
  • Monette, S. A., C. S. Velden, K. S. Griffin, and C. M. Rozoff, 2012: Examining trends in satellite-detected tropical overshooting tops as a potential predictor of tropical cyclone rapid intensification. J. Appl. Meteor. Climatol., 51, 19171930, doi:10.1175/JAMC-D-11-0230.1.

    • Search Google Scholar
    • Export Citation
  • Moore, P. L., and W. R. Davis, 1951: A preseason hurricane of subtropical origin. Mon. Wea. Rev., 79, 189195, doi:10.1175/1520-0493(1951)079<0189:APHOSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Namias, J., and P. F. Clapp, 1944: Studies of the motion and development of long waves in the westerlies. J. Meteor., 1, 5777, doi:10.1175/1520-0469(1944)001<0057:SOTMAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • NCDC, 2013: Storm events database. NCDC, accessed 18 September 2015. [Available online at https://www.ncdc.noaa.gov/stormevents/.]

  • NDBC, 2006: Northwest Straights/Puget Sound historical marine data. NDBC, accessed 6 March 2015. [Available online at http://www.ndbc.noaa.gov/maps/nw_straits_sound_hist.shtml.]

  • Neiman, P. J., and M. A. Shapiro, 1993: The life cycle of an extratropical marine cyclone. Part I: Frontal-cyclone evolution and thermodynamic air–sea interaction. Mon. Wea. Rev., 121, 21532176, doi:10.1175/1520-0493(1993)121<2153:TLCOAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., and J. P. Sheldon, 1993: A case of downstream baroclinic development over western North America. Mon. Wea. Rev., 121, 29292950, doi:10.1175/1520-0493(1993)121<2929:ACODBD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., and J. P. Sheldon, 1995: Stages in the energetics of baroclinic systems. Tellus, 47A, 605628, doi:10.1034/j.1600-0870.1995.00108.x.

    • Search Google Scholar
    • Export Citation
  • Palmén, E., 1948: On the formation and structure of tropical cyclones. Geophysics, 3, 2638.

  • Pezza, A. B., and I. Simmonds, 2005: The first South Atlantic hurricane: Unprecedented blocking, low shear and climate change. Geophys. Res. Lett., 32, L15712, doi:10.1029/2005GL023390.

    • Search Google Scholar
    • Export Citation
  • Pezza, A. B., L. A. Garde, J. A. P. Veiga, and I. Simmonds, 2014: Large scale features and energetics of the hybrid subtropical low ‘Duck’ over the Tasman Sea. Climate Dyn., 42, 453466, doi:10.1007/s00382-013-1688-x.

    • Search Google Scholar
    • Export Citation
  • Pytharoulis, I., G. C. Craig, and S. P. Ballard, 1999: Study of the hurricane-like Mediterranean cyclone of January 1995. Phys. Chem. Earth, 24, 627632, doi:10.1016/S1464-1909(99)00056-8.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 1992: Nonlinear balance and potential vorticity thinking at large Rossby number. Quart. J. Roy. Meteor. Soc., 118, 9871015, doi:10.1002/qj.49711850708.

    • Search Google Scholar
    • Export Citation
  • Reale, O., and R. Atlas, 2001: Tropical cyclone–like vortices in the extratropics: Observational evidence and synoptic analysis. Wea. Forecasting, 16, 734, doi:10.1175/1520-0434(2001)016<0007:TCLVIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, doi:10.1175/2007JCLI1824.1.

    • Search Google Scholar
    • Export Citation
  • Romps, D. M., and Z. Kuang, 2009: Overshooting convection in tropical cyclones. Geophys. Res. Lett., 36, L0984, doi:10.1029/2009GL037396.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., D. Keyser, and L. F. Bosart, 1998: The effect of large-scale flow on low-level frontal structure and evolution in midlatitude cyclones. Mon. Wea. Rev., 126, 17671791, doi:10.1175/1520-0493(1998)126<1767:TEOLSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., and D. Keyser, 1990: Fronts, jets streams, and the tropopause. Extratropical Cyclones: The Erik Palmén Memorial Volume, C. W. Newton and E. Holopainen, Eds., Amer. Meteor. Soc., 167–191.

  • Stoelinga, M. T., 1996: A potential vorticity–based study of the role of diabatic heating and friction in a numerically simulated baroclinic cyclone. Mon. Wea. Rev., 124, 849874, doi:10.1175/1520-0493(1996)124<0849:APVBSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sutcliffe, R. C., 1947: A contribution to the problem of development. Quart. J. Roy. Meteor. Soc., 73, 370383, doi:10.1002/qj.49707331710.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, doi:10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, W., W. Zhu, Y. Duan, H. Yu, L. Jiang, and X. Wang, 2008: Statistical analysis of large-scale background classification associated with tropical cyclone formations in the western North Pacific. J. Nanjing Inst. Meteor., 31, 277286.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., and H. C. Davies, 1997: A Lagrangian-based analysis of extratropical cyclones. I: The method and some applications. Quart. J. Roy. Meteor. Soc., 123, 467489, doi:10.1002/qj.49712353811.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., and M. Sprenger, 2007: Identification and ERA-15 climatology of potential vorticity streamers and cutoffs near the extratropical tropopause. J. Atmos. Sci., 64, 15691586, doi:10.1175/JAS3912.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Academic Press, 676 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 403 258 14
PDF Downloads 341 212 10

Tropical Transition of an Unnamed, High-Latitude, Tropical Cyclone over the Eastern North Pacific

View More View Less
  • 1 Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York
  • | 2 Department of Geoscience, Hobart and William Smith Colleges, Geneva, New York
Restricted access

Abstract

In early November 2006, an unnamed tropical cyclone (TC) formed via the tropical transition (TT) process at 42°N over the eastern North Pacific. An extratropical cyclone (EC), developing downstream of a thinning upper-tropospheric trough over the eastern North Pacific, served as the precursor disturbance that would ultimately undergo TT. The TT of the unnamed TC was extremely unusualoccurring over ~16°C sea surface temperatures in a portion of the eastern North Pacific basin historically devoid of TC activity.

This paper 1) identifies the upper- and lower-tropospheric features linked to the formation of the EC that transitions into the unnamed TC, 2) provides a synoptic overview of the features and processes associated with the unnamed TC’s TT, and 3) discusses the landfall of the weakening cyclone along the west coast of North America. As observed in previous studies of TT, the precursor EC progresses through the life cycle of a marine extratropical frontal cyclone, developing a bent-back warm front on its northern and western sides and undergoing a warm seclusion process. Backward air parcel trajectories suggest that air parcels isolated in the center of the transitioning cyclone were warmed in the lower troposphere via sensible heating from the underlying sea surface. Vertical cross sections taken through the center of the cyclone during its life cycle reveal its transformation from an asymmetric, cold-core, EC into an axisymmetric, warm-core, TC during TT. Ensemble reforecasts initialized after TT highlight the relatively low forecast skill associated with the landfall of the weakening cyclone.

Corresponding author address: Alicia M. Bentley, Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, ES-234, 1400 Washington Ave., Albany, NY 12222. E-mail: ambentley@albany.edu

Abstract

In early November 2006, an unnamed tropical cyclone (TC) formed via the tropical transition (TT) process at 42°N over the eastern North Pacific. An extratropical cyclone (EC), developing downstream of a thinning upper-tropospheric trough over the eastern North Pacific, served as the precursor disturbance that would ultimately undergo TT. The TT of the unnamed TC was extremely unusualoccurring over ~16°C sea surface temperatures in a portion of the eastern North Pacific basin historically devoid of TC activity.

This paper 1) identifies the upper- and lower-tropospheric features linked to the formation of the EC that transitions into the unnamed TC, 2) provides a synoptic overview of the features and processes associated with the unnamed TC’s TT, and 3) discusses the landfall of the weakening cyclone along the west coast of North America. As observed in previous studies of TT, the precursor EC progresses through the life cycle of a marine extratropical frontal cyclone, developing a bent-back warm front on its northern and western sides and undergoing a warm seclusion process. Backward air parcel trajectories suggest that air parcels isolated in the center of the transitioning cyclone were warmed in the lower troposphere via sensible heating from the underlying sea surface. Vertical cross sections taken through the center of the cyclone during its life cycle reveal its transformation from an asymmetric, cold-core, EC into an axisymmetric, warm-core, TC during TT. Ensemble reforecasts initialized after TT highlight the relatively low forecast skill associated with the landfall of the weakening cyclone.

Corresponding author address: Alicia M. Bentley, Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, ES-234, 1400 Washington Ave., Albany, NY 12222. E-mail: ambentley@albany.edu
Save