• AEMet, 2014: National Solar Radiation Network. Subset used: January 2003–December 2012, accessed September 2014.

  • Alapaty, K., J. A. Herwehe, T. L. Otte, C. G. Nolte, O. R. Bullock, M. S. Mallard, J. S. Kain, and J. Dudhia, 2012: Introducing subgrid-scale cloud feedbacks to radiation for regional meteorological and climate modeling. Geophys. Res. Lett., 39, L24809, doi:10.1029/2012GL054031.

    • Search Google Scholar
    • Export Citation
  • Bellouin, N., O. Boucher, J. Haywood, and M. S. Reddy, 2005: Global estimate of aerosol direct radiative forcing from satellite measurements. Nature, 438, 11381141, doi:10.1038/nature04348.

    • Search Google Scholar
    • Export Citation
  • Bellouin, N., J. Quaas, J.-J. Morcrette, and O. Boucher, 2013: Estimates of aerosol radiative forcing from the MACC re-analysis. Atmos. Chem. Phys., 13, 20452062, doi:10.5194/acp-13-2045-2013.

    • Search Google Scholar
    • Export Citation
  • Benedictow, A., and Coauthors, 2013: Validation report of the MACC reanalysis of global atmospheric composition: Period 2003–2012, MACC-II Deliverable D_83.5, D. Melas et al., Eds., KNMI, 85 pp. [Available online at http://www.gmes-atmosphere.eu/documents/maccii/deliverables/val/MACCII_VAL_DEL_D_83.5_REAreport03_20130729.pdf.]

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Esteban-Parra, M. J., F. S. Rodrigo, and Y. Castro-Diez, 1998: Spatial and temporal patterns of precipitation in Spain for the period 1880–1992. Int. J. Climatol., 18, 15571574, doi:10.1002/(SICI)1097-0088(19981130)18:14<1557::AID-JOC328>3.0.CO;2-J.

    • Search Google Scholar
    • Export Citation
  • Geiger, R., R. H. Aron, and P. Todhunter, 2009: The Climate near the Ground. 7th ed. Rowman & Littlefield, 642 pp.

  • Gueymard, C. A., and D. R. Myers, 2009: Evaluation of conventional and high-performance routine solar radiation measurements for improved solar resource, climatological trends, and radiative modeling. Sol. Energy, 83, 171185, doi:10.1016/j.solener.2008.07.015.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42 (2), 129151.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Jimenez, P. A., J. V. G. de Arellano, J. Navarro, and J. F. Gonzalez-Rouco, 2014: Understanding land–atmosphere interactions across a range of spatial and temporal scales. Bull. Amer. Meteor. Soc., 95, ES14ES17, doi:10.1175/BAMS-D-13-00029.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, D., and V. Ramanathan, 2008: Solar radiation budget and radiative forcing due to aerosols and clouds. J. Geophys. Res., 113, D02203, doi:10.1029/2007JD008434.

    • Search Google Scholar
    • Export Citation
  • Mateos, D., M. Antón, A. Valenzuela, A. Cazorla, F. Olmo, and L. Alados-Arboledas, 2013: Short-wave radiative forcing at the surface for cloudy systems at a midlatitude site. Tellus, 65B, 21069, doi:10.3402/tellusb.v65i0.21069.

    • Search Google Scholar
    • Export Citation
  • Muñoz-Díaz, D., and F. S. Rodrigo, 2004: Spatio-temporal patterns of seasonal rainfall in Spain (1912–2000) using cluster and principal component analysis: Comparison. Ann. Geophys., 22, 14351448, doi:10.5194/angeo-22-1435-2004.

    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., and Coauthors, 2012: The continual intercomparison of radiation codes: Results from phase I. J. Geophys. Res., 117, D06118, doi:10.1029/2011JD016821.

    • Search Google Scholar
    • Export Citation
  • Paquin-Ricard, D., C. Jones, and P. A. Vaillancourt, 2010: Using ARM observations to evaluate cloud and clear-sky radiation processes as simulated by the Canadian Regional Climate model GEM. Mon. Wea. Rev., 138, 818838, doi:10.1175/2009MWR2745.1.

    • Search Google Scholar
    • Export Citation
  • Pozo-Vázquez, D., M. J. Esteban-Parra, F. S. Rodrigo, and Y. Castro-Díez, 2001: A study of NAO variability and its possible non-linear influences on European surface temperature. Climate Dyn., 17, 701715, doi:10.1007/s003820000137.

    • Search Google Scholar
    • Export Citation
  • Räisänen, P., and H. Järvinen, 2010: Impact on cloud and radiation scheme modifications on climate simulated by the ECHAM5 atmospheric GCM. Quart. J. Roy. Meteor. Soc., 136, 17331752, doi:10.1002/qj.674.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann, 1989: Cloud-radiative forcing and climate: Results from the Earth Radiation Budget Experiment. Science, 243, 5763, doi:10.1126/science.243.4887.57.

    • Search Google Scholar
    • Export Citation
  • Rattan, S. S. P., and W. W. Hsieh, 2004: Nonlinear complex principal component analysis of the tropical Pacific interannual wind variability. Geophys. Res. Lett., 31, L21201, doi:10.1029/2004GL020446.

    • Search Google Scholar
    • Export Citation
  • Rodriguez-Puebla, C., A. H. Encinas, S. Nieto, and J. Garmendia, 1998: Spatial and temporal patterns of annual precipitation variability over the Iberian Peninsula. Int. J. Climatol., 18, 299316, doi:10.1002/(SICI)1097-0088(19980315)18:3<299::AID-JOC247>3.0.CO;2-L.

    • Search Google Scholar
    • Export Citation
  • Ruiz-Arias, J. A., J. Dudhia, F. J. Santos-Alamillos, and D. Pozo-Vázquez, 2013: Surface clear-sky shortwave radiative closure intercomparisons in the Weather Research and Forecasting model. J. Geophys. Res. Atmos., 118, 99019913, doi:10.1002/jgrd.50778.

    • Search Google Scholar
    • Export Citation
  • Ruiz-Arias, J. A., J. Dudhia, and C. A. Gueymard, 2014: A simple parameterization of the short-wave aerosol optical properties for surface direct and diffuse irradiances assessment in a numerical weather model. Geosci. Model Dev., 7, 11591174, doi:10.5194/gmd-7-1159-2014.

    • Search Google Scholar
    • Export Citation
  • Ruiz-Arias, J. A., C. A. Gueymard, F. J. Santos-Alamillos, and D. Pozo-Vázquez, 2015: Do spaceborne aerosol observations limit the accuracy of modeled surface solar irradiance? Geophys. Res. Lett., 42, 605612, doi:10.1002/2014GL062309.

    • Search Google Scholar
    • Export Citation
  • Santos-Alamillos, F. J., D. Pozo-Vázquez, J. A. Ruiz-Arias, V. Lara-Fanego, and J. Tovar-Pescador, 2012: Analysis of spatiotemporal balancing between wind and solar energy resources in the southern Iberian Peninsula. J. Appl. Meteor. Climatol., 51, 20052024, doi:10.1175/JAMC-D-11-0189.1.

    • Search Google Scholar
    • Export Citation
  • Santos-Alamillos, F. J., D. Pozo-Vázquez, J. A. Ruiz-Arias, V. Lara-Fanego, and J. Tovar-Pescador, 2014: A methodology for evaluating the spatial variability of wind energy resources: Application to assess the potential contribution of wind energy to baseload power. Renewable Energy, 69, 147156, doi:10.1016/j.renene.2014.03.006.

    • Search Google Scholar
    • Export Citation
  • Serrano, A., J. A. García, V. L. Mateos, M. L. Cancillo, and J. Garrido, 1999: Monthly modes of variation of precipitation over the Iberian Peninsula. J. Climate, 12, 28942919, doi:10.1175/1520-0442(1999)012<2894:MMOVOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Stengel, M., A. Kniffka, J. F. Meirink, A. Riihelä, J. Trentmann, R.Müller, M. Lockhoff, and R. Hollmann, 2013: CLAAS: CM SAF cloud property dataset using SEVIRI—Edition 1—Hourly/daily means, pentad means, monthly means/monthly mean diurnal cycle/monthly histograms. Satellite Application Facility on Climate Monitoring, accessed 22 December 2015, doi:10.5676/EUM_SAF_CM/CLAAS/V001.

  • Tewari, M., and Coauthors, 2004: Implementation and verification of the unified Noah land surface model in the WRF model . 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 14.2a. [Available online at https://ams.confex.com/ams/84Annual/techprogram/paper_69061.htm.]

    • Search Google Scholar
    • Export Citation
  • Thelen, J.-C., and J. M. Edwards, 2013: Short-wave radiances: Comparison between SEVIRI and the Unified Model. Quart. J. Roy. Meteor. Soc., 139, 16651679, doi:10.1002/qj.2034.

    • Search Google Scholar
    • Export Citation
  • Trigo, R., T. J. Osborn, and J. M. Corte-Real, 2002: The North Atlantic Oscillation influence on Europe: Climate impacts and associated physical mechanisms. Climate Res., 20, 917, doi:10.3354/cr020009.

    • Search Google Scholar
    • Export Citation
  • Trigo, R., D. Pozo-Vázquez, T. J. Osborn, Y. Castro-Díez, S. Gámiz-Fortis, and M. J. Esteban-Parra, 2004: North Atlantic oscillation influence on precipitation, river flow and water resources in the Iberian Peninsula. Int. J. Climatol., 24, 925944, doi:10.1002/joc.1048.

    • Search Google Scholar
    • Export Citation
  • Van Weverberg, K., C. J. Morcrette, H.-Y. Ma, S. A. Klein, and J. C. Petch, 2015: Using regime analysis to identify the contribution of clouds to surface temperature errors in weather and climate models. Quart. J. Roy. Meteor. Soc., 141, 31903206, doi: 10.1002/qj.2603.

    • Search Google Scholar
    • Export Citation
  • Von Storch, H., and F. W. Zwiers, 2002: Statistical Analysis in Climate Research. Cambridge University Press, 496 pp.

  • Wild, M., 2005: Solar radiation budgets in atmospheric model intercomparisons from a surface perspective. Geophys. Res. Lett., 32, L07704, doi:10.1029/2005GL022421.

    • Search Google Scholar
    • Export Citation
  • Wild, M., A. Ohmura, H. Gilgen, and E. Roeckner, 1995: Validation of general circulation model radiative fluxes using surface observations. J. Climate, 8, 13091324, doi:10.1175/1520-0442(1995)008<1309:VOGCMR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wild, M., D. Folini, C. Schär, N. Loeb, E. G. Dutton, and G. König-Langlo, 2013: The global energy balance from a surface perspective. Climate Dyn., 40, 31073134, doi:10.1007/s00382-012-1569-8.

    • Search Google Scholar
    • Export Citation
  • Wilks, D., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Academic Press, 704 pp.

  • WMO, 2008: Guide to meteorological instruments and methods of observation (2008 edition, updated in 2010). World Meteorological Organization Rep. WMO-8, Geneva, Switzerland, 716 pp. [Available online at https://www.wmo.int/pages/prog/www/IMOP/CIMO-Guide.html.]

  • Yang, F., H.-L. Pan, S. K. Krueger, S. Moorthi, and S. J. Lord, 2006: Evaluation of the NCEP Global Forecast System at the ARM SGP Site. Mon. Wea. Rev., 134, 36683690, doi:10.1175/MWR3264.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 823 495 39
PDF Downloads 749 462 31

Assessing the Surface Solar Radiation Budget in the WRF Model: A Spatiotemporal Analysis of the Bias and Its Causes

View More View Less
  • 1 Atmosphere and Solar Radiation Modeling Group, Department of Applied Physics I, University of Málaga, Málaga, Spain
  • | 2 Atmosphere and Solar Radiation Modeling Group, Department of Physics, University of Jaén, Jaén, Spain
Restricted access

Abstract

Solar radiation plays a key role in the atmospheric system but its distribution throughout the atmosphere and at the surface is still very uncertain in atmospheric models, and further assessment is required. In this study, the shortwave downward total solar radiation flux (SWD) predicted by the Weather Research and Forecasting (WRF) Model at the surface is validated over Spain for a 10-yr period based on observations of a network of 52 radiometric stations. In addition to the traditional pointwise validation of modeled data, an original spatially continuous evaluation of the SWD bias is also conducted using a principal component analysis. Overall, WRF overestimates the mean observed SWD by 28.9 W m−2, while the bias of ERA-Interim, which provides initial and boundary conditions to WRF, is only 15.0 W m−2. An important part of the WRF SWD bias seems to be related to a very low cumulus cloud amount in the model and, possibly, a misrepresentation of the radiative impact of this type of cloud.

Corresponding author address: J. A. Ruiz-Arias, Departamento de Física Aplicada II, 2a Planta Módulo de Químicas, Facultad de Ciencias, Campus de Teatinos s/n, 29071, Málaga, Spain. E-mail: jararias@ujaen.es

Abstract

Solar radiation plays a key role in the atmospheric system but its distribution throughout the atmosphere and at the surface is still very uncertain in atmospheric models, and further assessment is required. In this study, the shortwave downward total solar radiation flux (SWD) predicted by the Weather Research and Forecasting (WRF) Model at the surface is validated over Spain for a 10-yr period based on observations of a network of 52 radiometric stations. In addition to the traditional pointwise validation of modeled data, an original spatially continuous evaluation of the SWD bias is also conducted using a principal component analysis. Overall, WRF overestimates the mean observed SWD by 28.9 W m−2, while the bias of ERA-Interim, which provides initial and boundary conditions to WRF, is only 15.0 W m−2. An important part of the WRF SWD bias seems to be related to a very low cumulus cloud amount in the model and, possibly, a misrepresentation of the radiative impact of this type of cloud.

Corresponding author address: J. A. Ruiz-Arias, Departamento de Física Aplicada II, 2a Planta Módulo de Químicas, Facultad de Ciencias, Campus de Teatinos s/n, 29071, Málaga, Spain. E-mail: jararias@ujaen.es
Save