• Allen, J. T., M. K. Tippett, and A. H. Sobel, 2015: Influence of the El Niño/Southern Oscillation on tornado and hail frequency in the United States. Nat. Geosci., 8, 278283, doi:10.1038/ngeo2385.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. R., and R. D. Rosen, 1983: The latitude-height structure of 40-50 day variations in atmospheric angular momentum. J. Atmos. Sci., 40, 15841591, doi:10.1175/1520-0469(1983)040<1584:TLHSOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barrett, B. S., and V. A. Gensini, 2013: Variability of central United States April–May tornado day likelihood by phase of the Madden–Julian Oscillation. Geophys. Res. Lett., 40, 27902795, doi:10.1002/grl.50522.

    • Search Google Scholar
    • Export Citation
  • Barrett, B. S., and B. N. Henley, 2015: Intraseasonal variability of hail in the contiguous United States: Relationship to the Madden–Julian oscillation. Mon. Wea. Rev., 143, 10861103, doi:10.1175/MWR-D-14-00257.1.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., J. W. Lee, and J. P. Craven, 2003: The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data. Atmos. Res., 67–68, 7394, doi:10.1016/S0169-8095(03)00045-0.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., G. W. Carbin, and P. T. Marsh, 2014: Increased variability of tornado occurrence in the United States. Science, 346, 349352, doi:10.1126/science.1257460.

    • Search Google Scholar
    • Export Citation
  • Brunet, G., and Coauthors, 2010: Collaboration of the weather and climate communities to advance subseasonal-to-seasonal prediction. Bull. Amer. Meteor. Soc., 91, 13971406, doi:10.1175/2010BAMS3013.1.

    • Search Google Scholar
    • Export Citation
  • Cook, A. R., and J. Schaefer, 2008: The relation of El Niño–Southern Oscillation (ENSO) to winter tornado outbreaks. Mon. Wea. Rev., 136, 31213137, doi:10.1175/2007MWR2171.1.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560581, doi:10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gensini, V. A., and W. S. Ashley, 2011: Climatology of potentially severe convective environments from the North American regional reanalysis. Electron. J. Severe Storms Meteor., 6 (8). [Available online at http://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/85.]

    • Search Google Scholar
    • Export Citation
  • Grice, G., and Coauthors, 1999: The golden anniversary celebration of the first tornado forecast. Bull. Amer. Meteor. Soc., 80, 13411348, doi:10.1175/1520-0477(1999)080<1341:TGACOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., 1995: Length of day changes associated with the Madden–Julian Oscillation. J. Atmos. Sci., 52, 23732383, doi:10.1175/1520-0469(1995)052<2373:LODCAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Langley, R. B., R. W. King, I. I. Shapiro, R. D. Rosen, and D. A. Salstein, 1981: Atmospheric angular momentum and the length of day: A common fluctuation with a period near 50 days. Nature, 294, 730732, doi:10.1038/294730a0.

    • Search Google Scholar
    • Export Citation
  • Lott, F., A. W. Robertson, and M. Ghil, 2001: Mountain torques and atmospheric oscillations. Geophys. Res. Lett., 28, 12071210, doi:10.1029/2000GL011829.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., 1987: Relationships between changes in the length of day and the 40‐ to 50‐day oscillation in the tropics. J. Geophys. Res., 92, 83918399, doi:10.1029/JD092iD07p08391.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. Speth, 1995: Estimates of atmospheric angular momentum, friction, and mountain torques during 1987–1988. J. Atmos. Sci., 52, 36813694, doi:10.1175/1520-0469(1995)052<3681:EOAAMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and R. E. Livezey, 1986: Tropical-extratropical geopotential height teleconnections during the Northern Hemisphere winter. Mon. Wea. Rev., 114, 24882515, doi:10.1175/1520-0493(1986)114<2488:TEGHTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Muñoz, E., and D. Enfield, 2011: The boreal spring variability of the Intra-Americas low-level jet and its relation with precipitation and tornadoes in the eastern United States. Climate Dyn., 36, 247259, doi:10.1007/s00382-009-0688-3.

    • Search Google Scholar
    • Export Citation
  • NOAA/NCDC, 2015: NCEP North American Regional Reanalysis (32km, 25 years). NOAA/NCDC, accessed 12 December 2015. [Available online at http://nomads.ncdc.noaa.gov/data.php#narr_datasets.]

  • NOAA/NWS Storm Prediction Center, 2015: Severe Weather Database Files (1950–2014). NOAA/NWS Storm Prediction Center, accessed 12 December 2015. [Available online at http://www.spc.noaa.gov/wcm/#data.]

  • Oort, A., 1997: Angular momentum cycle in planet earth. Encyclopedia of Planetary Science, J. H. Shirley and R. W. Fairbridge, Eds., Springer, 13–19.

  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Simmons, K. M., and D. Sutter, 2012: The 2011 tornadoes and the future of tornado research. Bull. Amer. Meteor. Soc., 93, 959961, doi:10.1175/BAMS-D-11-00126.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. B., and P. E. Roundy, 2013: The relationship between the Madden–Julian oscillation and U.S. violent tornado outbreaks in the spring. Mon. Wea. Rev., 141, 20872095, doi:10.1175/MWR-D-12-00173.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12431261, doi:10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weickmann, K. M., 2003: Mountains, the global frictional torque, and the circulation over the Pacific–North American region. Mon. Wea. Rev., 131, 26082622, doi:10.1175/1520-0493(2003)131<2608:MTGFTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weickmann, K. M., and E. Berry, 2007: A synoptic-dynamic model of subseasonal atmospheric variability. Mon. Wea. Rev., 135, 449474, doi:10.1175/MWR3293.1.

    • Search Google Scholar
    • Export Citation
  • Weickmann, K. M., and E. Berry, 2009: The tropical Madden–Julian oscillation and the global wind oscillation. Mon. Wea. Rev., 137, 16011614, doi:10.1175/2008MWR2686.1.

    • Search Google Scholar
    • Export Citation
  • Weickmann, K. M., S. Khalsa, and J. Eischeid, 1992: The atmospheric angular-momentum cycle during the tropical Madden–Julian Oscillation. Mon. Wea. Rev., 120, 22522263, doi:10.1175/1520-0493(1992)120<2252:TAAMCD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weickmann, K. M., G. N. Kiladis, and P. D. Sardeshmukh, 1997: The dynamics of intraseasonal atmospheric angular momentum oscillations. J. Atmos. Sci., 54, 14451461, doi:10.1175/1520-0469(1997)054<1445:TDOIAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 708 327 16
PDF Downloads 406 171 4

Tornado Frequency in the United States Related to Global Relative Angular Momentum

View More View Less
  • 1 Meteorology Program, College of DuPage, Glen Ellyn, Illinois
  • | 2 Meteorology Program, Northern Illinois University, DeKalb, Illinois
Restricted access

Abstract

Global relative angular momentum and the first time derivative are used to explain nearly an order of magnitude of the variability in 1994–2013 U.S. boreal spring tornado occurrence. When plotted in a phase space, the global wind oscillation (GWO) is obtained. This global index accounts for changes in the global budget of angular momentum through interactions of tropical convection anomalies and extratropical dynamics including the engagement of surface torques. It is shown herein that tornadoes are more likely to occur in low angular momentum base states and less likely to occur in high angular momentum base states. When excluding weak GWO days, a maximum average of 3.9 (E)F1+ tornadoes per day were found during phase 1. This decreases to a minimum of 0.9 (E)F1+ tornadoes per day during phase 5. Composite environmental analysis suggests that increases/decreases in tornado occurrence are closely associated with anomalies in tropospheric ingredients necessary for tornadic storms. In addition, tornado frequency days exceeding the 90th percentile are shown to be favored when the global relative angular momentum budget and first time derivative are negative (GWO phases 1 and 2), as are significant tornado events [(E)F2+]. Implications for using GWO as a predictor for tornado forecasting are also discussed.

Corresponding author address: Vittorio A. Gensini, Meteorology Program, College of DuPage, 425 Fawell Blvd., Glen Ellyn, IL 60137. E-mail: gensiniv@cod.edu

Abstract

Global relative angular momentum and the first time derivative are used to explain nearly an order of magnitude of the variability in 1994–2013 U.S. boreal spring tornado occurrence. When plotted in a phase space, the global wind oscillation (GWO) is obtained. This global index accounts for changes in the global budget of angular momentum through interactions of tropical convection anomalies and extratropical dynamics including the engagement of surface torques. It is shown herein that tornadoes are more likely to occur in low angular momentum base states and less likely to occur in high angular momentum base states. When excluding weak GWO days, a maximum average of 3.9 (E)F1+ tornadoes per day were found during phase 1. This decreases to a minimum of 0.9 (E)F1+ tornadoes per day during phase 5. Composite environmental analysis suggests that increases/decreases in tornado occurrence are closely associated with anomalies in tropospheric ingredients necessary for tornadic storms. In addition, tornado frequency days exceeding the 90th percentile are shown to be favored when the global relative angular momentum budget and first time derivative are negative (GWO phases 1 and 2), as are significant tornado events [(E)F2+]. Implications for using GWO as a predictor for tornado forecasting are also discussed.

Corresponding author address: Vittorio A. Gensini, Meteorology Program, College of DuPage, 425 Fawell Blvd., Glen Ellyn, IL 60137. E-mail: gensiniv@cod.edu
Save