• Barron, C. N., A. Birol Kara, P. J. Martin, R. C. Rhodes, and L. Smedstad, 2006: Formulation, implementation and examination of vertical coordinate choices in the Global Navy Coastal Ocean Model (NCOM). Ocean Modell., 11, 347375, doi:10.1016/j.ocemod.2005.01.004.

    • Search Google Scholar
    • Export Citation
  • Bennett, A. F., 1992: Inverse Methods in Physical Oceanography. Cambridge University Press, 347 pp.

  • Bennett, A. F., 2002: Inverse Modeling of the Ocean and Atmosphere. Cambridge University Press, 234 pp.

  • Bleck, R., 2002: An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Modell., 4, 5588, doi:10.1016/S1463-5003(01)00012-9.

    • Search Google Scholar
    • Export Citation
  • Blumberg, A. F., and G. L. Mellor, 1987: A description of a three-dimensional coastal ocean circulation model. Three-Dimensional Coastal Ocean Models, N. Heaps, Ed., Amer. Geophys. Union, 1–16.

  • Carrier, M. J., and H. Ngodock, 2010: Background-error correlation model based on the implicit solution of a diffusion equation. Ocean Modell., 35, 4553, doi:10.1016/j.ocemod.2010.06.003.

    • Search Google Scholar
    • Export Citation
  • Carrier, M. J., H. Ngodock, S. Smith, G. Jacobs, P. Muscarella, T. Ozgokmen, B. Haus, and B. Lipphardt, 2014: Impact of assimilating ocean velocity observations inferred from Lagrangian drifter data using the NCOM-4DVAR. Mon. Wea. Rev., 142, 15091524, doi:10.1175/MWR-D-13-00236.1.

    • Search Google Scholar
    • Export Citation
  • Centurioni, L. R., J. C. Ohlmann, and P. P. Niiler, 2008: Permanent meanders in the California Current System. J. Phys. Oceanogr., 38, 16901710, doi:10.1175/2008JPO3746.1.

    • Search Google Scholar
    • Export Citation
  • Chassignet, E. P., H. E. Hurlburt, O. M. Smedstad, G. R. Halliwell, P. J. Hogan, A. J. Wallcraft, R. Baraille, and R. Bleck, 2007: The HYCOM (HYbrid Coordinate Ocean Model) data assimilation system. J. Mar. Syst., 65, 6083, doi:10.1016/j.jmarsys.2005.09.016.

    • Search Google Scholar
    • Export Citation
  • Chua, B. S., and A. F. Bennett, 2001: An inverse ocean modeling system. Ocean Modell., 3, 137165, doi:10.1016/S1463-5003(01)00006-3.

  • Cooper, M., and K. Haines, 1996: Altimetric assimilation with water property conservation. J. Geophys. Res., 101, 10591077, doi:10.1029/95JC02902.

    • Search Google Scholar
    • Export Citation
  • Cummings, J. A., 2005: Operational multivariate ocean data assimilation. Quart. J. Roy. Meteor. Soc., 131, 35833604, doi:10.1256/qj.05.105.

    • Search Google Scholar
    • Export Citation
  • Ferron, B., 2011: A 4D-variational approach applied to an eddy-permitting North Atlantic configuration: Synthetic and real data assimilation of altimeter observations. Ocean Modell., 39, 370385, doi:10.1016/j.ocemod.2011.06.001.

    • Search Google Scholar
    • Export Citation
  • Fox, D. N., W. J. Teague, C. N. Barron, M. R. Carnes, and C. M. Lee, 2002: The Modular Ocean Data Assimilation System (MODAS). J. Atmos. Oceanic Technol., 19, 240252, doi:10.1175/1520-0426(2002)019<0240:TMODAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Haines, K., 1991: A direct method for assimilating sea surface height data into ocean models with adjustments to the deep circulation. J. Phys. Oceanogr., 21, 843868, doi:10.1175/1520-0485(1991)021<0843:ADMFAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoteit, I., T. Hoar, G. Gopalakrishnan, N. Collins, J. Anderson, B. Cornuelle, A. Kohl, and P. Heimbach, 2013: A MITgcm/DART ensemble analysis and prediction system with application to the Gulf of Mexico. Dyn. Atmos. Oceans, 63, 123, doi:10.1016/j.dynatmoce.2013.03.002.

    • Search Google Scholar
    • Export Citation
  • Jacobs, G. A., C. N. Barron, D. N. Fox, K. R. Whitmer, S. Klingenberger, D. May, and J. P. Blaha, 2002: Operational altimeter sea level products. Oceanography, 15, 1321, doi:10.5670/oceanog.2002.32.

    • Search Google Scholar
    • Export Citation
  • Jacobs, G. A., J. G. Richman, J. D. Doyle, P. L. Spence, B. P. Bartels, C. N. Barron, R. W. Helber, and F. L. Bub, 2014: Simulating conditional deterministic predictability within ocean frontogenesis. Ocean Modell., 78, 116, doi:10.1016/j.ocemod.2014.02.004.

    • Search Google Scholar
    • Export Citation
  • Leben, R., 2005: Altimeter-derived loop current metrics. Circulation in the Gulf of Mexico: Observations and Models, Geophys. Monogr., Vol. 161, Amer. Geophys. Union, 181–201, doi: 10.1029/161GM15.

  • Marchesiello, P., J. C. McWilliams, and A. F. Shchepetkin, 2001: Open boundary conditions for long-term integration of regional oceanic models. Ocean Modell., 3, 120, doi:10.1016/S1463-5003(00)00013-5.

    • Search Google Scholar
    • Export Citation
  • Martin, P. J., 2000: Description of the Navy Coastal Ocean Model version 1.0. NRL Rep. NRL/FR/7322/00/9962, 45 pp. [Available from NRL, Code 7322, Bldg. 1009, Stennis Space Center, MS 39529-5004.]

  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Search Google Scholar
    • Export Citation
  • Moore, A. M., and Coauthors, 2011: The Regional Ocean Modeling System (ROMS) 4-dimensional variational data assimilation systems: Part II—Performance and application to the California Current System. Prog. Oceanogr., 91, 5073, doi:10.1016/j.pocean.2011.05.003.

    • Search Google Scholar
    • Export Citation
  • Muscarella, P., M. J. Carrier, H. Ngodock, S. Smith, B. L. Lipphardt, A. D. Kirwan Jr., and H. S. Huntley, 2015: Do assimilated drifter velocities improve Lagrangian predictability in an operational ocean model? Mon. Wea. Rev., 143, 18221832, doi:10.1175/MWR-D-14-00164.1.

    • Search Google Scholar
    • Export Citation
  • Ngodock, H. E., 2005: Efficient implementation of covariance multiplication for data assimilation with the representer method. Ocean Modell., 8, 237251, doi:10.1016/j.ocemod.2003.12.005.

    • Search Google Scholar
    • Export Citation
  • Ngodock, H. E., and M. J. Carrier, 2013: A weak constraint 4D-Var Assimilation system for the Navy coastal ocean model using the representer method. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, Vol. II, S. K. Park and L. Xu, Eds., Springer-Verlag, doi:10.1007/978-3-642-35088-7_15.

  • Ngodock, H. E., and M. J. Carrier, 2014: A 4DVAR system for the Navy Coastal Ocean Model. Part I: System description and assimilation of synthetic observations in the Monterey Bay. Mon. Wea. Rev., 142, 20852107, doi:10.1175/MWR-D-13-00221.1.

    • Search Google Scholar
    • Export Citation
  • Ngodock, H. E., G. A. Jacobs, and M. Chen, 2006: The representer method, the ensemble Kalman filter and the ensemble Kalman smoother: A comparison study using a nonlinear reduced gravity ocean model. Ocean Modell., 12, 378400, doi:10.1016/j.ocemod.2005.08.001.

    • Search Google Scholar
    • Export Citation
  • Poje, A. C., and Coauthors, 2014: Submesoscale dispersion in the vicinity of the Deepwater Horizon spill. Proc. Natl. Acad. Sci., 111, 12 69312 698, doi:10.1073/pnas.1402452111.

    • Search Google Scholar
    • Export Citation
  • Rosmond, T. E., J. Teixeria, M. Peng, T. F. Hogan, and R. Pauley, 2002: Navy Operational Global Prediction System (NOGAPS): Forcing for ocean models. Oceanography, 15, 99106, doi:10.5670/oceanog.2002.40.

    • Search Google Scholar
    • Export Citation
  • Schmitz, W., 2005: Cyclones and westward propagation in the shedding of anticyclonic rings from the loop current. Circulation in the Gulf of Mexico: Observations and Models, Geophys. Monogr., Vol. 161, Amer. Geophys. Union, 241–261, doi:10.1029/161GM18.

  • Shchepetkin, A. F., and J. C. McWilliams, 2003: A method for computing horizontal pressure-gradient force in an oceanic model with nonaligned vertical grid. J. Geophys. Res., 108, 3090, doi:10.1029/2001JC001047.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, doi:10.1016/j.ocemod.2004.08.002.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. I: The basic experiment. Mon. Wea. Rev., 91, 99164, doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. T., and P. Courtier, 2001: Correlation modeling on the sphere using a generalized diffusion equation. Quart. J. Roy. Meteor. Soc., 127, 18151846, doi:10.1002/qj.49712757518.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. T., C. Deltel, E. Machu, S. Ricci, and N. Daget, 2005: A multivariate balance operator for variational ocean data assimilation. Quart. J. Roy. Meteor. Soc., 131, 36053625, doi:10.1256/qj.05.119.

    • Search Google Scholar
    • Export Citation
  • Xu, F.-H., L.-Y. Oey, Y. Miyazawa, and P. Hamilton, 2013: Hindcasts and forecasts of Loop Current eddies in the Gulf of Mexico using local ensemble transform Kalman filter and optimum-interpolation assimilation schemes. Ocean Modell., 69, 2238, doi:10.1016/j.ocemod.2013.05.002.

    • Search Google Scholar
    • Export Citation
  • Yaremchuk, M., M. Carrier, S. Smith, and G. Jacobs, 2013: Background error correlation modeling with diffusion operators. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, Vol. II, S. K. Park and L. Xu, Eds., Springer-Verlag, doi:10.1007/978-3-642-35088-7_15.

  • Zavala-Garay, J., J. L. Wilkin, and H. G. Arango, 2012: Predictability of mesoscale variability in the East Australian Current given strong-constraint data assimilation. J. Phys. Oceanogr., 42, 14021420, doi:10.1175/JPO-D-11-0168.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 6 6 6
PDF Downloads 1 1 1

Impact of Assimilating Surface Velocity Observations on the Model Sea Surface Height Using the NCOM-4DVAR

View More View Less
  • 1 Naval Research Laboratory, Stennis Space Center, Mississippi
Restricted access

Abstract

The assimilation of surface velocity observations and their impact on the model sea surface height (SSH) is examined using an operational regional ocean model and its four-dimensional variational data assimilation (4DVAR) analysis component. In this work, drifter-derived surface velocity observations are assimilated into the Navy’s Coastal Ocean Model (NCOM) 4DVAR in weak-constraint mode for a Gulf of Mexico (GoM) experiment during August–September 2012. During this period the model is trained by assimilating surface velocity observations (in a series of 96-h assimilation windows), which is followed by a 30-day forecast through the month of October 2012. A free-run model and a model that assimilates along-track SSH observations are also run as baseline experiments to which the other experiments are compared. It is shown here that the assimilation of surface velocity measurements has a substantial impact on improving the model representation of the forecast SSH on par with the experiment that assimilates along-track SSH observations directly. Finally, an assimilation experiment is done where both along-track SSH and velocity observations are utilized in an attempt to determine if the observation types are redundant or complementary. It is found that the combination of observations provides the best SSH forecast, in terms of the fit to observations, when compared to the previous experiments.

Corresponding author address: Matthew J. Carrier, Naval Research Laboratory, Bldg. 1009 Balch Blvd., Stennis Space Center, MS 39529. E-mail: matthew.carrier@nrlssc.navy.mil

Naval Research Laboratory Contribution Number NRL/JA/7320-14-2292.

Abstract

The assimilation of surface velocity observations and their impact on the model sea surface height (SSH) is examined using an operational regional ocean model and its four-dimensional variational data assimilation (4DVAR) analysis component. In this work, drifter-derived surface velocity observations are assimilated into the Navy’s Coastal Ocean Model (NCOM) 4DVAR in weak-constraint mode for a Gulf of Mexico (GoM) experiment during August–September 2012. During this period the model is trained by assimilating surface velocity observations (in a series of 96-h assimilation windows), which is followed by a 30-day forecast through the month of October 2012. A free-run model and a model that assimilates along-track SSH observations are also run as baseline experiments to which the other experiments are compared. It is shown here that the assimilation of surface velocity measurements has a substantial impact on improving the model representation of the forecast SSH on par with the experiment that assimilates along-track SSH observations directly. Finally, an assimilation experiment is done where both along-track SSH and velocity observations are utilized in an attempt to determine if the observation types are redundant or complementary. It is found that the combination of observations provides the best SSH forecast, in terms of the fit to observations, when compared to the previous experiments.

Corresponding author address: Matthew J. Carrier, Naval Research Laboratory, Bldg. 1009 Balch Blvd., Stennis Space Center, MS 39529. E-mail: matthew.carrier@nrlssc.navy.mil

Naval Research Laboratory Contribution Number NRL/JA/7320-14-2292.

Save